Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

108 lines
2.8 KiB
Markdown
Raw Permalink Normal View History

2024-06-18 15:53:06 +02:00
---
title: Run the MLflow Connector Externally
slug: /connectors/ml-model/mlflow/yaml
---
{% connectorDetailsHeader
name="MLflow"
2024-06-18 15:53:06 +02:00
stage="PROD"
platform="OpenMetadata"
availableFeatures=["ML Features", "Hyperparameters", "ML Store"]
unavailableFeatures=[]
/ %}
In this section, we provide guides and references to use the MLflow connector.
Configure and schedule MLflow metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
{% partial file="/v1.8/connectors/external-ingestion-deployment.md" /%}
2024-06-18 15:53:06 +02:00
## Requirements
### Python Requirements
{% partial file="/v1.8/connectors/python-requirements.md" /%}
2024-06-18 15:53:06 +02:00
To run the MLflow ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[mlflow]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/mlmodel/mlflowConnection.json)
you can find the structure to create a connection to MLflow.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/mlmodelServiceMetadataPipeline.json)
### 1. Define the YAML Config
This is a sample config for MLflow:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**trackingUri**: MLflow Experiment tracking URI. E.g., http://localhost:5000
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**registryUri**: MLflow Model registry backend. E.g., mysql+pymysql://mlflow:password@localhost:3307/experiments
{% /codeInfo %}
{% partial file="/v1.8/connectors/yaml/ml-model/source-config-def.md" /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.8/connectors/yaml/ingestion-sink-def.md" /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.8/connectors/yaml/workflow-config-def.md" /%}
2024-06-18 15:53:06 +02:00
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml {% isCodeBlock=true %}
source:
type: mlflow
serviceName: local_mlflow
serviceConnection:
config:
type: Mlflow
```
```yaml {% srNumber=1 %}
trackingUri: http://localhost:5000
```
```yaml {% srNumber=2 %}
registryUri: mysql+pymysql://mlflow:password@localhost:3307/experiments
```
{% partial file="/v1.8/connectors/yaml/ml-model/source-config.md" /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.8/connectors/yaml/ingestion-sink.md" /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.8/connectors/yaml/workflow-config.md" /%}
2024-06-18 15:53:06 +02:00
{% /codeBlock %}
{% /codePreview %}
{% partial file="/v1.8/connectors/yaml/ingestion-cli.md" /%}