394 lines
11 KiB
Markdown
Raw Normal View History

---
title: Run Tableau Connector using the CLI
slug: /connectors/dashboard/tableau/cli
---
2022-08-26 14:46:21 +02:00
# Run Tableau using the metadata CLI
2022-08-26 14:46:21 +02:00
In this section, we provide guides and references to use the Tableau connector.
2022-08-26 14:46:21 +02:00
Configure and schedule Tableau metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
2022-08-26 14:46:21 +02:00
## Requirements
To ingest tableau metadata, minimum `Site Role: Viewer` is requried for the tableau user.
2022-08-26 14:46:21 +02:00
<InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12 or later" href="/deployment">
To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
</InlineCallout>
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Tableau ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[tableau]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/dashboard/tableauConnection.json)
2022-08-26 14:46:21 +02:00
you can find the structure to create a connection to Tableau.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
2022-08-26 14:46:21 +02:00
### 1. Define the YAML Config
This is a sample config for Tableau:
```yaml
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
username: username
password: password
env: tableau_prod
hostPort: http://localhost
siteName: site_name
siteUrl: site_url
apiVersion: api_version
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
# personalAccessTokenSecret: personal_access_token_secret
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
```
### Example Source Configurations for default and non-default tableau sites
#### 1. Sample config for default tableau site
For a default tableau site `siteName` and `siteUrl` fields should be kept as empty strings as shown in the below config.
```yaml
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
username: username
password: password
env: tableau_prod
hostPort: http://localhost
siteName: ""
siteUrl: ""
apiVersion: api_version
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
# personalAccessTokenSecret: personal_access_token_secret
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
```
#### 1. Sample config for non-default tableau site
For a non-default tableau site `siteName` and `siteUrl` fields are required.
<Note>
If `https://xxx.tableau.com/#/site/sitename/home` represents the homepage url for your tableau site, the `sitename` from the url should be entered in the `siteName` and `siteUrl` fields in the config below.
</Note>
```yaml
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
username: username
password: password
env: tableau_prod
hostPort: http://localhost
siteName: openmetadata
siteUrl: openmetadata
apiVersion: api_version
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
# personalAccessTokenSecret: personal_access_token_secret
2022-08-26 14:46:21 +02:00
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
2022-08-26 14:46:21 +02:00
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
2022-08-26 14:46:21 +02:00
```
#### Source Configuration - Service Connection
- **hostPort**: URL to the Tableau instance.
- **username**: Specify the User to connect to Tableau. It should have enough privileges to read all the metadata.
- **password**: Password for Tableau.
- **apiVersion**: Tableau API version.
- **siteName**: Tableau Site Name. To be kept empty if you are using the default Tableau site
- **siteUrl**: Tableau Site Url. To be kept empty if you are using the default Tableau site
- **personalAccessTokenName**: Access token. To be used if not logging in with user/password.
- **personalAccessTokenSecret**: Access token Secret. To be used if not logging in with user/password.
- **env**: Tableau Environment.
2022-08-26 14:46:21 +02:00
#### Source Configuration - Source Config
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/dashboardServiceMetadataPipeline.json):
2022-08-26 14:46:21 +02:00
- `dbServiceNames`: Database Service Name for the creation of lineage, if the source supports it.
2022-08-26 14:46:21 +02:00
- `dashboardFilterPattern` and `chartFilterPattern`: Note that the `dashboardFilterPattern` and `chartFilterPattern` both support regex as include or exclude. E.g.,
```yaml
dashboardFilterPattern:
includes:
- users
- type_test
```
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
2022-08-26 14:46:21 +02:00
```
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
2022-08-26 14:46:21 +02:00
You can find the different implementation of the ingestion below.
<Collapse title="Configure SSO in the Ingestion Workflows">
### Openmetadata JWT Auth
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
2022-08-26 14:46:21 +02:00
### Auth0 SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
</Collapse>
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.