315 lines
8.7 KiB
Markdown
Raw Normal View History

---
title: Run Glue Pipeline Connector using Airflow SDK
slug: /connectors/pipeline/glue-pipeline/airflow
---
# Run Glue Pipeline using the Airflow SDK
2022-08-27 02:57:09 +02:00
In this section, we provide guides and references to use the Glue connector.
2022-08-27 02:57:09 +02:00
Configure and schedule Glue metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
2022-08-27 02:57:09 +02:00
## Requirements
<InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12 or later" href="/deployment">
To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
</InlineCallout>
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Glue ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[glue]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/glueConnection.json)
2022-08-27 02:57:09 +02:00
you can find the structure to create a connection to Glue.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
2022-08-27 02:57:09 +02:00
### 1. Define the YAML Config
This is a sample config for Glue:
```yaml
source:
type: glue
serviceName: local_glue
serviceConnection:
config:
type: Glue
awsConfig:
awsAccessKeyId: KEY
awsSecretAccessKey: SECRET
awsRegion: us-east-2
# endPointURL: https://glue.us-east-2.amazonaws.com/
# awsSessionToken: TOKEN
sourceConfig:
config:
type: PipelineMetadata
# includeLineage: true
# pipelineFilterPattern:
# includes:
# - pipeline1
# - pipeline2
# excludes:
# - pipeline3
# - pipeline4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
2022-08-27 02:57:09 +02:00
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
2022-08-27 02:57:09 +02:00
```
#### Source Configuration - Service Connection
- **awsAccessKeyId**: Enter your secure access key ID for your Glue connection. The specified key ID should be
authorized to read all databases you want to include in the metadata ingestion workflow.
- **awsSecretAccessKey**: Enter the Secret Access Key (the passcode key pair to the key ID from above).
- **awsRegion**: Enter the location of the amazon cluster that your data and account are associated with.
- **awsSessionToken**: The AWS session token is an optional parameter. If you want, enter the details of your temporary
session token.
- **endPointURL**: Your Glue connector will automatically determine the AWS Glue endpoint URL based on the region. You
may override this behavior by entering a value to the endpoint URL.
2022-08-27 02:57:09 +02:00
#### Source Configuration - Source Config
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/pipelineServiceMetadataPipeline.json):
2022-08-27 02:57:09 +02:00
- `dbServiceName`: Database Service Name for the creation of lineage, if the source supports it.
- `pipelineFilterPattern` and `chartFilterPattern`: Note that the `pipelineFilterPattern` and `chartFilterPattern` both support regex as include or exclude. E.g.,
```yaml
pipelineFilterPattern:
includes:
- users
- type_test
```
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
2022-08-27 02:57:09 +02:00
```
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
2022-08-27 02:57:09 +02:00
You can find the different implementation of the ingestion below.
<Collapse title="Configure SSO in the Ingestion Workflows">
### Openmetadata JWT Auth
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
2022-08-27 02:57:09 +02:00
### Auth0 SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
</Collapse>
## 2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
```python
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
config = """
<your YAML configuration>
"""
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will
be able to extract metadata from different sources.