93 lines
2.7 KiB
Python
Raw Normal View History

# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utils module to convert different file types from s3 buckets into a dataframe
"""
import json
import os
import traceback
from typing import Any
import pandas as pd
from pyarrow import fs
from pyarrow.parquet import ParquetFile
from metadata.utils.logger import utils_logger
logger = utils_logger()
def read_csv_from_s3(
client: Any,
key: str,
bucket_name: str,
sep: str = ",",
):
"""
Read the csv file from the s3 bucket and return a dataframe
"""
try:
stream = client.get_object(Bucket=bucket_name, Key=key)["Body"]
chunk_list = []
with pd.read_csv(stream, sep=sep, chunksize=200000) as reader:
for chunks in reader:
chunk_list.append(chunks)
return chunk_list
except Exception as exc:
logger.debug(traceback.format_exc())
logger.warning(f"Error reading CSV from s3 - {exc}")
return None
def read_tsv_from_s3(
client,
key: str,
bucket_name: str,
):
"""
Read the tsv file from the s3 bucket and return a dataframe
"""
try:
return read_csv_from_s3(client, key, bucket_name, sep="\t")
except Exception as exc:
logger.debug(traceback.format_exc())
logger.warning(f"Error reading TSV from s3 - {exc}")
return None
def read_json_from_s3(client: Any, key: str, bucket_name: str, sample_size=100):
"""
Read the json file from the s3 bucket and return a dataframe
"""
2022-10-19 14:12:23 +05:30
obj = client.get_object(Bucket=bucket_name, Key=key)
json_text = obj["Body"].read().decode("utf-8")
data = json.loads(json_text)
if isinstance(data, list):
return [pd.DataFrame.from_dict(data[:sample_size])]
return [
pd.DataFrame.from_dict({key: pd.Series(value) for key, value in data.items()})
]
def read_parquet_from_s3(client: Any, key: str, bucket_name: str):
"""
Read the parquet file from the s3 bucket and return a dataframe
"""
s3_file = fs.S3FileSystem(region=client.meta.region_name)
return [
ParquetFile(s3_file.open_input_file(os.path.join(bucket_name, key)))
.read()
.to_pandas()
]