2024-07-17 08:11:34 +02:00
|
|
|
import sys
|
|
|
|
|
|
|
|
import pytest
|
2024-08-22 23:53:34 +02:00
|
|
|
from sqlalchemy import create_engine
|
2024-07-17 08:11:34 +02:00
|
|
|
|
2024-08-22 23:53:34 +02:00
|
|
|
from _openmetadata_testutils.pydantic.test_utils import assert_equal_pydantic_objects
|
|
|
|
from metadata.generated.schema.entity.data.table import ColumnProfile
|
2024-07-17 08:11:34 +02:00
|
|
|
from metadata.ingestion.lineage.sql_lineage import search_cache
|
|
|
|
from metadata.workflow.metadata import MetadataWorkflow
|
|
|
|
from metadata.workflow.profiler import ProfilerWorkflow
|
|
|
|
|
|
|
|
if not sys.version_info >= (3, 9):
|
|
|
|
pytest.skip("requires python 3.9+", allow_module_level=True)
|
|
|
|
|
|
|
|
|
2024-08-22 23:53:34 +02:00
|
|
|
@pytest.fixture(scope="module")
|
|
|
|
def prepare_postgres(postgres_container):
|
|
|
|
engine = create_engine(postgres_container.get_connection_url())
|
|
|
|
sql = [
|
|
|
|
"CREATE TABLE financial_transactions (id SERIAL PRIMARY KEY, amount MONEY);",
|
|
|
|
"INSERT INTO financial_transactions (amount) VALUES (100.00), (200.00), (300.00), (400.00), (500.00);",
|
|
|
|
]
|
|
|
|
for stmt in sql:
|
|
|
|
engine.execute(stmt)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
|
|
def run_profiler(
|
|
|
|
patch_passwords_for_db_services,
|
|
|
|
prepare_postgres,
|
|
|
|
run_workflow,
|
|
|
|
ingestion_config,
|
|
|
|
profiler_config,
|
2024-07-17 08:11:34 +02:00
|
|
|
):
|
|
|
|
search_cache.clear()
|
|
|
|
run_workflow(MetadataWorkflow, ingestion_config)
|
|
|
|
run_workflow(ProfilerWorkflow, profiler_config)
|
2024-08-22 23:53:34 +02:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"table_fqn,expected_column_profiles",
|
|
|
|
[
|
|
|
|
[
|
|
|
|
"{service}.dvdrental.public.financial_transactions",
|
|
|
|
{
|
|
|
|
"id": ColumnProfile.model_validate(
|
|
|
|
{
|
|
|
|
"name": "id",
|
|
|
|
"timestamp": 1724343985740,
|
|
|
|
"valuesCount": 5.0,
|
|
|
|
"nullCount": 0.0,
|
|
|
|
"nullProportion": 0.0,
|
|
|
|
"uniqueCount": 5.0,
|
|
|
|
"uniqueProportion": 1.0,
|
|
|
|
"distinctCount": 5.0,
|
|
|
|
"distinctProportion": 1.0,
|
|
|
|
"min": 1.0,
|
|
|
|
"max": 5.0,
|
|
|
|
"mean": 3.0,
|
|
|
|
"sum": 15.0,
|
|
|
|
"stddev": 1.414213562373095,
|
|
|
|
"median": 3.0,
|
|
|
|
"firstQuartile": 2.0,
|
|
|
|
"thirdQuartile": 4.0,
|
|
|
|
"interQuartileRange": 2.0,
|
|
|
|
"nonParametricSkew": 0.0,
|
|
|
|
"histogram": {
|
|
|
|
"boundaries": ["1.000 to 3.339", "3.339 and up"],
|
|
|
|
"frequencies": [3, 2],
|
|
|
|
},
|
|
|
|
}
|
|
|
|
),
|
|
|
|
"amount": ColumnProfile.model_validate(
|
|
|
|
{
|
|
|
|
"name": "amount",
|
|
|
|
"timestamp": 1724343985743,
|
|
|
|
"valuesCount": 5.0,
|
|
|
|
"nullCount": 0.0,
|
|
|
|
"nullProportion": 0.0,
|
|
|
|
"uniqueCount": 5.0,
|
|
|
|
"uniqueProportion": 1.0,
|
|
|
|
"distinctCount": 5.0,
|
|
|
|
"distinctProportion": 1.0,
|
|
|
|
"min": "$100.00",
|
|
|
|
"max": "$500.00",
|
|
|
|
"mean": 300.0,
|
|
|
|
"sum": 1500.0,
|
|
|
|
"stddev": 141.4213562373095,
|
|
|
|
}
|
|
|
|
),
|
|
|
|
},
|
|
|
|
]
|
|
|
|
],
|
|
|
|
ids=lambda x: x.split(".")[-1] if isinstance(x, str) else "",
|
|
|
|
)
|
|
|
|
def test_profiler(
|
|
|
|
table_fqn,
|
|
|
|
expected_column_profiles,
|
|
|
|
db_service,
|
|
|
|
run_profiler,
|
|
|
|
metadata,
|
|
|
|
):
|
|
|
|
table = metadata.get_latest_table_profile(
|
|
|
|
table_fqn.format(service=db_service.fullyQualifiedName.root)
|
|
|
|
)
|
|
|
|
for name, expected_profile in expected_column_profiles.items():
|
|
|
|
actual_column_profile = next(
|
|
|
|
column for column in table.columns if column.name.root == name
|
|
|
|
).profile
|
|
|
|
# the timestamp always changes so we equalize them to avoid comparison
|
|
|
|
actual_column_profile.timestamp = expected_profile.timestamp
|
|
|
|
assert_equal_pydantic_objects(
|
|
|
|
expected_profile,
|
|
|
|
actual_column_profile,
|
|
|
|
)
|