mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-07-25 18:30:00 +00:00
422 lines
13 KiB
Markdown
422 lines
13 KiB
Markdown
![]() |
---
|
||
|
title: Run DeltaLake Connector using Airflow SDK
|
||
|
slug: /connectors/database/deltalake/airflow
|
||
|
---
|
||
|
|
||
|
# Run Deltalake using the Airflow SDK
|
||
|
|
||
|
{% multiTablesWrapper %}
|
||
|
|
||
|
| Feature | Status |
|
||
|
| :----------------- | :--------------------------- |
|
||
|
| Stage | PROD |
|
||
|
| Metadata | {% icon iconName="check" /%} |
|
||
|
| Query Usage | {% icon iconName="cross" /%} |
|
||
|
| Data Profiler | {% icon iconName="cross" /%} |
|
||
|
| Data Quality | {% icon iconName="cross" /%} |
|
||
|
| Lineage | Partially via Views |
|
||
|
| DBT | {% icon iconName="cross" /%} |
|
||
|
| Supported Versions | -- |
|
||
|
|
||
|
| Feature | Status |
|
||
|
| :----------- | :--------------------------- |
|
||
|
| Lineage | Partially via Views |
|
||
|
| Table-level | {% icon iconName="check" /%} |
|
||
|
| Column-level | {% icon iconName="check" /%} |
|
||
|
|
||
|
{% /multiTablesWrapper %}
|
||
|
|
||
|
In this section, we provide guides and references to use the Deltalake connector.
|
||
|
|
||
|
Configure and schedule Deltalake metadata and profiler workflows from the OpenMetadata UI:
|
||
|
|
||
|
- [Requirements](#requirements)
|
||
|
- [Metadata Ingestion](#metadata-ingestion)
|
||
|
- [dbt Integration](#dbt-integration)
|
||
|
|
||
|
## Requirements
|
||
|
|
||
|
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
|
||
|
To deploy OpenMetadata, check the Deployment guides.
|
||
|
{%/inlineCallout%}
|
||
|
|
||
|
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
|
||
|
custom Airflow plugins to handle the workflow deployment.
|
||
|
|
||
|
### Python Requirements
|
||
|
|
||
|
To run the Deltalake ingestion, you will need to install:
|
||
|
|
||
|
```bash
|
||
|
pip3 install "openmetadata-ingestion[deltalake]"
|
||
|
```
|
||
|
|
||
|
## Metadata Ingestion
|
||
|
|
||
|
All connectors are defined as JSON Schemas.
|
||
|
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/deltaLakeConnection.json)
|
||
|
you can find the structure to create a connection to Deltalake.
|
||
|
|
||
|
In order to create and run a Metadata Ingestion workflow, we will follow
|
||
|
the steps to create a YAML configuration able to connect to the source,
|
||
|
process the Entities if needed, and reach the OpenMetadata server.
|
||
|
|
||
|
The workflow is modeled around the following
|
||
|
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
|
||
|
|
||
|
### 1. Define the YAML Config
|
||
|
|
||
|
This is a sample config for Deltalake:
|
||
|
|
||
|
{% codePreview %}
|
||
|
|
||
|
{% codeInfoContainer %}
|
||
|
|
||
|
#### Source Configuration - Service Connection
|
||
|
|
||
|
{% codeInfo srNumber=1 %}
|
||
|
|
||
|
**Metastore Host Port**: Enter the Host & Port of Hive Metastore Service to configure the Spark Session. Either
|
||
|
of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
|
||
|
|
||
|
**Metastore File Path**: Enter the file path to local Metastore in case Spark cluster is running locally. Either
|
||
|
of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
|
||
|
|
||
|
**Metastore DB**: The JDBC connection to the underlying Hive metastore DB. Either
|
||
|
of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
|
||
|
|
||
|
**appName (Optional)**: Enter the app name of spark session.
|
||
|
|
||
|
**Connection Arguments (Optional)**: Key-Value pairs that will be used to pass extra `config` elements to the Spark
|
||
|
Session builder.
|
||
|
|
||
|
We are internally running with `pyspark` 3.X and `delta-lake` 2.0.0. This means that we need to consider Spark
|
||
|
configuration options for 3.X.
|
||
|
|
||
|
##### Metastore Host Port
|
||
|
|
||
|
When connecting to an External Metastore passing the parameter `Metastore Host Port`, we will be preparing a Spark Session with the configuration
|
||
|
|
||
|
```
|
||
|
.config("hive.metastore.uris", "thrift://{connection.metastoreHostPort}")
|
||
|
```
|
||
|
|
||
|
Then, we will be using the `catalog` functions from the Spark Session to pick up the metadata exposed by the Hive Metastore.
|
||
|
|
||
|
##### Metastore File Path
|
||
|
|
||
|
If instead we use a local file path that contains the metastore information (e.g., for local testing with the default `metastore_db` directory), we will set
|
||
|
|
||
|
```
|
||
|
.config("spark.driver.extraJavaOptions", "-Dderby.system.home={connection.metastoreFilePath}")
|
||
|
```
|
||
|
|
||
|
To update the `Derby` information. More information about this in a great [SO thread](https://stackoverflow.com/questions/38377188/how-to-get-rid-of-derby-log-metastore-db-from-spark-shell).
|
||
|
|
||
|
- You can find all supported configurations [here](https://spark.apache.org/docs/latest/configuration.html)
|
||
|
- If you need further information regarding the Hive metastore, you can find
|
||
|
it [here](https://spark.apache.org/docs/3.0.0-preview/sql-data-sources-hive-tables.html), and in The Internals of
|
||
|
Spark SQL [book](https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql-hive-metastore.html).
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
|
||
|
#### Source Configuration - Source Config
|
||
|
|
||
|
{% codeInfo srNumber=4 %}
|
||
|
|
||
|
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
|
||
|
|
||
|
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
|
||
|
|
||
|
**includeTables**: true or false, to ingest table data. Default is true.
|
||
|
|
||
|
**includeViews**: true or false, to ingest views definitions.
|
||
|
|
||
|
**databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the they support regex as include or exclude. E.g.,
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
#### Sink Configuration
|
||
|
|
||
|
{% codeInfo srNumber=5 %}
|
||
|
|
||
|
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
#### Workflow Configuration
|
||
|
|
||
|
{% codeInfo srNumber=6 %}
|
||
|
|
||
|
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
|
||
|
|
||
|
For a simple, local installation using our docker containers, this looks like:
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
#### Advanced Configuration
|
||
|
|
||
|
{% codeInfo srNumber=2 %}
|
||
|
|
||
|
**Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=3 %}
|
||
|
|
||
|
**Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
|
||
|
|
||
|
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
|
||
|
- In case you authenticate with SSO using an external browser popup, then add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "externalbrowser"`
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% /codeInfoContainer %}
|
||
|
|
||
|
{% codeBlock fileName="filename.yaml" %}
|
||
|
|
||
|
```yaml
|
||
|
source:
|
||
|
type: deltalake
|
||
|
serviceName: "<service name>"
|
||
|
serviceConnection:
|
||
|
config:
|
||
|
type: DeltaLake
|
||
|
```
|
||
|
```yaml {% srNumber=1 %}
|
||
|
metastoreConnection:
|
||
|
# Pick only of the three
|
||
|
metastoreHostPort: "<metastore host port>"
|
||
|
# metastoreDb: jdbc:mysql://localhost:3306/demo_hive
|
||
|
# metastoreFilePath: "<path_to_metastore>/metastore_db"
|
||
|
appName: MyApp
|
||
|
```
|
||
|
```yaml {% srNumber=2 %}
|
||
|
# connectionOptions:
|
||
|
# key: value
|
||
|
```
|
||
|
```yaml {% srNumber=3 %}
|
||
|
# connectionArguments:
|
||
|
# key: value
|
||
|
```
|
||
|
|
||
|
```yaml {% srNumber=4 %}
|
||
|
sourceConfig:
|
||
|
config:
|
||
|
type: DatabaseMetadata
|
||
|
markDeletedTables: true
|
||
|
includeTables: true
|
||
|
includeViews: true
|
||
|
# includeTags: true
|
||
|
# databaseFilterPattern:
|
||
|
# includes:
|
||
|
# - database1
|
||
|
# - database2
|
||
|
# excludes:
|
||
|
# - database3
|
||
|
# - database4
|
||
|
# schemaFilterPattern:
|
||
|
# includes:
|
||
|
# - schema1
|
||
|
# - schema2
|
||
|
# excludes:
|
||
|
# - schema3
|
||
|
# - schema4
|
||
|
# tableFilterPattern:
|
||
|
# includes:
|
||
|
# - users
|
||
|
# - type_test
|
||
|
# excludes:
|
||
|
# - table3
|
||
|
# - table4
|
||
|
```
|
||
|
|
||
|
```yaml {% srNumber=5 %}
|
||
|
sink:
|
||
|
type: metadata-rest
|
||
|
config: {}
|
||
|
```
|
||
|
|
||
|
```yaml {% srNumber=6 %}
|
||
|
workflowConfig:
|
||
|
openMetadataServerConfig:
|
||
|
hostPort: "http://localhost:8585/api"
|
||
|
authProvider: openmetadata
|
||
|
securityConfig:
|
||
|
jwtToken: "{bot_jwt_token}"
|
||
|
```
|
||
|
|
||
|
{% /codeBlock %}
|
||
|
|
||
|
{% /codePreview %}
|
||
|
|
||
|
### Workflow Configs for Security Provider
|
||
|
|
||
|
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
|
||
|
|
||
|
## Openmetadata JWT Auth
|
||
|
|
||
|
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
|
||
|
|
||
|
```yaml
|
||
|
workflowConfig:
|
||
|
openMetadataServerConfig:
|
||
|
hostPort: "http://localhost:8585/api"
|
||
|
authProvider: openmetadata
|
||
|
securityConfig:
|
||
|
jwtToken: "{bot_jwt_token}"
|
||
|
```
|
||
|
|
||
|
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
|
||
|
|
||
|
|
||
|
### 2. Prepare the Ingestion DAG
|
||
|
|
||
|
Create a Python file in your Airflow DAGs directory with the following contents:
|
||
|
|
||
|
{% codePreview %}
|
||
|
|
||
|
{% codeInfoContainer %}
|
||
|
|
||
|
|
||
|
{% codeInfo srNumber=7 %}
|
||
|
|
||
|
#### Import necessary modules
|
||
|
|
||
|
The `Workflow` class that is being imported is a part of a metadata ingestion framework, which defines a process of getting data from different sources and ingesting it into a central metadata repository.
|
||
|
|
||
|
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=8 %}
|
||
|
|
||
|
**Default arguments for all tasks in the Airflow DAG.**
|
||
|
|
||
|
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=9 %}
|
||
|
|
||
|
- **config**: Specifies config for the metadata ingestion as we prepare above.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=10 %}
|
||
|
|
||
|
- **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `Workflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=11 %}
|
||
|
|
||
|
- **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
|
||
|
- For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag).
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
Note that from connector to connector, this recipe will always be the same.
|
||
|
By updating the `YAML configuration`, you will be able to extract metadata from different sources.
|
||
|
|
||
|
{% /codeInfoContainer %}
|
||
|
|
||
|
{% codeBlock fileName="filename.py" %}
|
||
|
|
||
|
```python {% srNumber=7 %}
|
||
|
import pathlib
|
||
|
import yaml
|
||
|
from datetime import timedelta
|
||
|
from airflow import DAG
|
||
|
from metadata.config.common import load_config_file
|
||
|
from metadata.ingestion.api.workflow import Workflow
|
||
|
from airflow.utils.dates import days_ago
|
||
|
|
||
|
try:
|
||
|
from airflow.operators.python import PythonOperator
|
||
|
except ModuleNotFoundError:
|
||
|
from airflow.operators.python_operator import PythonOperator
|
||
|
|
||
|
|
||
|
```
|
||
|
|
||
|
```python {% srNumber=8 %}
|
||
|
default_args = {
|
||
|
"owner": "user_name",
|
||
|
"email": ["username@org.com"],
|
||
|
"email_on_failure": False,
|
||
|
"retries": 3,
|
||
|
"retry_delay": timedelta(minutes=5),
|
||
|
"execution_timeout": timedelta(minutes=60)
|
||
|
}
|
||
|
|
||
|
|
||
|
```
|
||
|
|
||
|
```python {% srNumber=9 %}
|
||
|
config = """
|
||
|
<your YAML configuration>
|
||
|
"""
|
||
|
|
||
|
|
||
|
```
|
||
|
|
||
|
```python {% srNumber=10 %}
|
||
|
def metadata_ingestion_workflow():
|
||
|
workflow_config = yaml.safe_load(config)
|
||
|
workflow = Workflow.create(workflow_config)
|
||
|
workflow.execute()
|
||
|
workflow.raise_from_status()
|
||
|
workflow.print_status()
|
||
|
workflow.stop()
|
||
|
|
||
|
|
||
|
```
|
||
|
|
||
|
```python {% srNumber=11 %}
|
||
|
with DAG(
|
||
|
"sample_data",
|
||
|
default_args=default_args,
|
||
|
description="An example DAG which runs a OpenMetadata ingestion workflow",
|
||
|
start_date=days_ago(1),
|
||
|
is_paused_upon_creation=False,
|
||
|
schedule_interval='*/5 * * * *',
|
||
|
catchup=False,
|
||
|
) as dag:
|
||
|
ingest_task = PythonOperator(
|
||
|
task_id="ingest_using_recipe",
|
||
|
python_callable=metadata_ingestion_workflow,
|
||
|
)
|
||
|
|
||
|
|
||
|
```
|
||
|
|
||
|
{% /codeBlock %}
|
||
|
|
||
|
{% /codePreview %}
|
||
|
|
||
|
## dbt Integration
|
||
|
|
||
|
{% tilesContainer %}
|
||
|
|
||
|
{% tile
|
||
|
icon="mediation"
|
||
|
title="dbt Integration"
|
||
|
description="Learn more about how to ingest dbt models' definitions and their lineage."
|
||
|
link="/connectors/ingestion/workflows/dbt" /%}
|
||
|
|
||
|
{% /tilesContainer %}
|
||
|
|
||
|
## Related
|
||
|
|
||
|
{% tilesContainer %}
|
||
|
|
||
|
{% tile
|
||
|
title="Ingest with the CLI"
|
||
|
description="Run a one-time ingestion using the metadata CLI"
|
||
|
link="/connectors/database/deltalake/cli"
|
||
|
/ %}
|
||
|
|
||
|
{% /tilesContainer %}
|