87 lines
1.9 KiB
Markdown
Raw Normal View History

2022-03-10 08:59:13 +00:00
---
description: This guide will help install Looker connector and run manually
---
# Looker
{% hint style="info" %}
**Prerequisites**
OpenMetadata is built using Java, DropWizard, Jetty, and MySQL.
1. Python 3.7 or above
{% endhint %}
### Install from PyPI
{% tabs %}
{% tab title="Install Using PyPI" %}
```bash
pip install 'openmetadata-ingestion[looker]'
```
{% endtab %}
{% endtabs %}
## Run Manually
```bash
metadata ingest -c ./examples/workflows/looker.json
```
### Configuration
{% code title="looker.json" %}
```javascript
{
"source": {
"type": "looker",
"config": {
"username": "Looker Client ID",
"password": "Looker Client Secret",
"url": "http://localhost",
"service_name": "looker",
2022-03-28 13:28:39 +00:00
}
2022-03-10 08:59:13 +00:00
}
...
```
{% endcode %}
1. **username** - pass the Looker Client ID.
2. **password** - the password for the Looker Client Secret.
3. **url** - looker connector url
4. **service\_name** - Service Name for this Looker cluster. If you added the Looker cluster through OpenMetadata UI, make sure the service name matches the same.
5. **filter\_pattern** - It contains includes, excludes options to choose which pattern of datasets you want to ingest into OpenMetadata.
### Publish to OpenMetadata
Below is the configuration to publish Looker data into the OpenMetadata service.
Add `metadata-rest` sink along with `metadata-server` config
{% code title="looker.json" %}
```javascript
{
"source": {
"type": "looker",
"config": {
"username": "Looker Client ID",
"password": "Looker Client Secret",
"url": "http://localhost",
"service_name": "looker",
2022-03-28 13:28:39 +00:00
}
2022-03-10 08:59:13 +00:00
},
"sink": {
"type": "metadata-rest",
"config": {}
},
"metadata_server": {
"type": "metadata-server",
"config": {
"api_endpoint": "http://localhost:8585/api",
"auth_provider_type": "no-auth"
}
}
}
```
{% endcode %}