2024-06-18 15:53:06 +02:00
---
title: Run the Sagemaker Connector Externally
slug: /connectors/ml-model/sagemaker/yaml
---
{% connectorDetailsHeader
name="Sagemaker"
stage="PROD"
platform="OpenMetadata"
availableFeatures=["ML Store"]
unavailableFeatures=["ML Features", "Hyperparameters"]
/ %}
In this section, we provide guides and references to use the Sagemaker connector.
Configure and schedule Sagemaker metadata and profiler workflows from the OpenMetadata UI:
- [Requirements ](#requirements )
- [Metadata Ingestion ](#metadata-ingestion )
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/external-ingestion-deployment.md" /%}
2024-06-18 15:53:06 +02:00
## Requirements
OpenMetadata retrieves infor mation about models and tags associated with the models in the AWS account.
The user must have the following policy set to ingest the metadata from Sagemaker.
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "SageMakerPolicy",
"Effect": "Allow",
"Action": [
"sagemaker:ListModels",
"sagemaker:DescribeModel",
"sagemaker:ListTags"
],
"Resource": "*"
}
]
}
```
For more information on Sagemaker permissions visit the [AWS Sagemaker official documentation ](https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html ).
### Python Requirements
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/python-requirements.md" /%}
2024-06-18 15:53:06 +02:00
To run the Sagemaker ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[sagemaker]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/mlmodel/sageMakerConnection.json )
you can find the structure to create a connection to Sagemaker.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/mlmodelServiceMetadataPipeline.json )
### 1. Define the YAML Config
This is a sample config for Sagemaker:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/common/aws-config-def.md" /%}
2024-06-18 15:53:06 +02:00
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/ml-model/source-config-def.md" /%}
2024-06-18 15:53:06 +02:00
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/ingestion-sink-def.md" /%}
2024-06-18 15:53:06 +02:00
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/workflow-config-def.md" /%}
2024-06-18 15:53:06 +02:00
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml {% isCodeBlock=true %}
source:
type: sagemaker
serviceName: local_sagemaker
serviceConnection:
config:
2025-01-15 18:38:08 +05:30
type: SageMaker
2024-06-18 15:53:06 +02:00
awsConfig:
```
2025-03-24 09:07:16 +05:30
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/common/aws-config.md" /%}
2024-06-18 15:53:06 +02:00
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/ml-model/source-config.md" /%}
2024-06-18 15:53:06 +02:00
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/ingestion-sink.md" /%}
2024-06-18 15:53:06 +02:00
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/workflow-config.md" /%}
2024-06-18 15:53:06 +02:00
{% /codeBlock %}
{% /codePreview %}
2025-04-18 08:42:17 +02:00
{% partial file="/v1.8/connectors/yaml/ingestion-cli.md" /%}