mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-09-04 06:33:10 +00:00
99 lines
3.2 KiB
Python
99 lines
3.2 KiB
Python
![]() |
# Copyright 2021 Collate
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
"""
|
||
|
Processor util to fetch pii sensitive columns
|
||
|
"""
|
||
|
from typing import Optional
|
||
|
|
||
|
from metadata.generated.schema.entity.classification.tag import Tag
|
||
|
from metadata.generated.schema.entity.data.table import Table, TableData
|
||
|
from metadata.ingestion.ometa.ometa_api import OpenMetadata
|
||
|
from metadata.pii import PII
|
||
|
from metadata.pii.column_name_scanner import ColumnNameScanner
|
||
|
from metadata.pii.ner_scanner import NERScanner
|
||
|
from metadata.utils import fqn
|
||
|
from metadata.utils.logger import profiler_logger
|
||
|
|
||
|
logger = profiler_logger()
|
||
|
|
||
|
|
||
|
class PIIProcessor:
|
||
|
"""
|
||
|
A scanner that uses Spacy NER for entity recognition
|
||
|
"""
|
||
|
|
||
|
def __init__(self, metadata: OpenMetadata):
|
||
|
|
||
|
self.metadata = metadata
|
||
|
|
||
|
def patch_column_tag(
|
||
|
self, tag_type: str, table_entity: Table, column_name: str
|
||
|
) -> None:
|
||
|
"""
|
||
|
Build the tag and run the PATCH
|
||
|
"""
|
||
|
tag_fqn = fqn.build(
|
||
|
self.metadata,
|
||
|
entity_type=Tag,
|
||
|
classification_name=PII,
|
||
|
tag_name=tag_type,
|
||
|
)
|
||
|
self.metadata.patch_column_tag(
|
||
|
entity_id=table_entity.id,
|
||
|
column_name=column_name,
|
||
|
tag_fqn=tag_fqn,
|
||
|
is_suggested=True,
|
||
|
)
|
||
|
|
||
|
def process(
|
||
|
self,
|
||
|
table_data: Optional[TableData],
|
||
|
table_entity: Table,
|
||
|
confidence_threshold: float,
|
||
|
):
|
||
|
"""
|
||
|
Main entrypoint for the scanner.
|
||
|
|
||
|
Adds PII tagging based on the column names
|
||
|
and TableData
|
||
|
"""
|
||
|
for idx, column in enumerate(table_entity.columns):
|
||
|
|
||
|
# First, check if the column we are about to process
|
||
|
# already has PII tags or not
|
||
|
column_has_pii_tag = any(
|
||
|
(PII in tag.tagFQN.__root__ for tag in column.tags or [])
|
||
|
)
|
||
|
|
||
|
# If it has PII tags, we skip the processing
|
||
|
# for the column
|
||
|
if column_has_pii_tag is True:
|
||
|
continue
|
||
|
|
||
|
# Scan by column name. If no results there, check the sample data, if any
|
||
|
tag_and_confidence = ColumnNameScanner.scan(column.name.__root__) or (
|
||
|
NERScanner.scan([row[idx] for row in table_data.rows])
|
||
|
if table_data
|
||
|
else None
|
||
|
)
|
||
|
|
||
|
if (
|
||
|
tag_and_confidence
|
||
|
and tag_and_confidence.tag
|
||
|
and tag_and_confidence.confidence >= confidence_threshold / 100
|
||
|
):
|
||
|
self.patch_column_tag(
|
||
|
tag_type=tag_and_confidence.tag.value,
|
||
|
table_entity=table_entity,
|
||
|
column_name=table_entity.columns[idx].name.__root__,
|
||
|
)
|