mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-10-31 18:48:35 +00:00 
			
		
		
		
	
		
			
	
	
		
			118 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			118 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | title: Run Data Insights using Airflow SDK | ||
|  | slug: /how-to-guides/data-insights/airflow-sdk | ||
|  | --- | ||
|  | 
 | ||
|  | # Run Data Insights using Airflow SDK
 | ||
|  | 
 | ||
|  | ## 1. Define the YAML Config
 | ||
|  | 
 | ||
|  | This is a sample config for Data Insights: | ||
|  | 
 | ||
|  | ```yaml | ||
|  | source: | ||
|  |   type: dataInsight | ||
|  |   serviceName: OpenMetadata | ||
|  |   sourceConfig: | ||
|  |     config: | ||
|  |       type: MetadataToElasticSearch | ||
|  | processor: | ||
|  |   type: data-insight-processor | ||
|  |   config: {} | ||
|  | sink: | ||
|  |   type: elasticsearch | ||
|  |   config: | ||
|  |     es_host: localhost | ||
|  |     es_port: 9200 | ||
|  |     recreate_indexes: false | ||
|  | workflowConfig: | ||
|  |   loggerLevel: DEBUG | ||
|  |   openMetadataServerConfig: | ||
|  |     hostPort: '<OpenMetadata host and port>' | ||
|  |     authProvider: openmetadata | ||
|  |     securityConfig: | ||
|  |       jwtToken: '{bot_jwt_token}' | ||
|  | ``` | ||
|  | 
 | ||
|  | ### Source Configuration - Source Config
 | ||
|  | 
 | ||
|  | - To send the metadata to OpenMetadata, it needs to be specified as `type: MetadataToElasticSearch`. | ||
|  | 
 | ||
|  | ### Processor Configuration
 | ||
|  | 
 | ||
|  | - To send the metadata to OpenMetadata, it needs to be specified as `type: data-insight-processor`. | ||
|  | 
 | ||
|  | ### Workflow Configuration
 | ||
|  | 
 | ||
|  | The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation. | ||
|  | 
 | ||
|  | For a simple, local installation using our docker containers, this looks like: | ||
|  | 
 | ||
|  | ```yaml | ||
|  | workflowConfig: | ||
|  |   openMetadataServerConfig: | ||
|  |     hostPort: 'http://localhost:8585/api' | ||
|  |     authProvider: openmetadata | ||
|  |     securityConfig: | ||
|  |       jwtToken: '{bot_jwt_token}' | ||
|  | ``` | ||
|  | 
 | ||
|  | We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client). | ||
|  | You can find the different implementation of the ingestion below. | ||
|  | 
 | ||
|  | ## 2. Prepare the Data Insights DAG
 | ||
|  | 
 | ||
|  | Create a Python file in your Airflow DAGs directory with the following contents: | ||
|  | 
 | ||
|  | ```python | ||
|  | import pathlib | ||
|  | import yaml | ||
|  | from datetime import timedelta | ||
|  | from airflow import DAG | ||
|  | from metadata.workflow.data_insight import DataInsightWorkflow | ||
|  | from metadata.workflow.workflow_output_handler import print_status | ||
|  | 
 | ||
|  | try: | ||
|  |     from airflow.operators.python import PythonOperator | ||
|  | except ModuleNotFoundError: | ||
|  |     from airflow.operators.python_operator import PythonOperator | ||
|  | 
 | ||
|  | from metadata.config.common import load_config_file | ||
|  | from airflow.utils.dates import days_ago | ||
|  | 
 | ||
|  | default_args = { | ||
|  |     "owner": "user_name", | ||
|  |     "email": ["username@org.com"], | ||
|  |     "email_on_failure": False, | ||
|  |     "retries": 3, | ||
|  |     "retry_delay": timedelta(minutes=5), | ||
|  |     "execution_timeout": timedelta(minutes=60) | ||
|  | } | ||
|  | 
 | ||
|  | config = """ | ||
|  | <your YAML configuration> | ||
|  | """ | ||
|  | 
 | ||
|  | def metadata_ingestion_workflow(): | ||
|  |     workflow_config = yaml.safe_load(config) | ||
|  |     workflow = DataInsightWorkflow.create(workflow_config) | ||
|  |     workflow.execute() | ||
|  |     workflow.raise_from_status() | ||
|  |     print_status(workflow) | ||
|  |     workflow.stop() | ||
|  | 
 | ||
|  | with DAG( | ||
|  |     "sample_data", | ||
|  |     default_args=default_args, | ||
|  |     description="An example DAG which runs a OpenMetadata ingestion workflow", | ||
|  |     start_date=days_ago(1), | ||
|  |     is_paused_upon_creation=False, | ||
|  |     schedule_interval='*/5 * * * *', | ||
|  |     catchup=False, | ||
|  | ) as dag: | ||
|  |     ingest_task = PythonOperator( | ||
|  |         task_id="ingest_using_recipe", | ||
|  |         python_callable=metadata_ingestion_workflow, | ||
|  |     ) | ||
|  | ``` |