2023-04-25 16:58:47 +02:00
---
2023-07-14 14:12:27 +02:00
title: Run the Databricks Pipeline Connector Externally
slug: /connectors/pipeline/databricks-pipeline/yaml
2023-04-25 16:58:47 +02:00
---
2023-07-14 14:12:27 +02:00
# Run the Databricks Pipeline Connector Externally
2023-04-25 16:58:47 +02:00
2023-07-14 14:12:27 +02:00
In this section, we provide guides and references to use the Databricks Pipeline connector.
2023-04-25 16:58:47 +02:00
2023-07-14 14:12:27 +02:00
Configure and schedule Databricks Pipeline metadata and profiler workflows from the OpenMetadata UI:
2023-04-25 16:58:47 +02:00
- [Requirements ](#requirements )
- [Metadata Ingestion ](#metadata-ingestion )
2023-08-25 08:49:58 +02:00
{% partial file="/v1.1.2/connectors/external-ingestion-deployment.md" /%}
2023-07-14 14:12:27 +02:00
2023-04-25 16:58:47 +02:00
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{% /inlineCallout %}
2023-07-14 14:12:27 +02:00
2023-04-25 16:58:47 +02:00
### Python Requirements
2023-07-14 14:12:27 +02:00
To run the Databricks Pipeline ingestion, you will need to install:
2023-04-25 16:58:47 +02:00
```bash
2023-07-14 14:12:27 +02:00
pip3 install "openmetadata-ingestion[databricks]"
2023-04-25 16:58:47 +02:00
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
2023-07-14 14:12:27 +02:00
[Here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/pipeline/databricksPipelineConnection.json )
you can find the structure to create a connection to Databricks Pipeline.
2023-04-25 16:58:47 +02:00
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json )
### 1. Define the YAML Config
2023-07-14 14:12:27 +02:00
This is a sample config for Databricks Pipeline:
2023-04-25 16:58:47 +02:00
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
2023-07-14 14:12:27 +02:00
**Host and Port**: Enter the fully qualified hostname and port number for your Databricks Pipeline deployment in the Host and Port field.
{% /codeInfo %}
{% codeInfo srNumber=2 %}
2023-04-25 16:58:47 +02:00
2023-07-14 14:12:27 +02:00
**Token**: Generated Token to connect to Databricks Pipeline.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Databricks during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
**HTTP Path**: Databricks Pipeline compute resources URL.
2023-04-25 16:58:47 +02:00
{% /codeInfo %}
#### Source Configuration - Source Config
2023-07-14 14:12:27 +02:00
{% codeInfo srNumber=4 %}
2023-04-25 16:58:47 +02:00
The `sourceConfig` is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/pipelineServiceMetadataPipeline.json ):
**dbServiceNames**: Database Service Name for the creation of lineage, if the source supports it.
**includeTags**: Set the Include tags toggle to control whether or not to include tags as part of metadata ingestion.
**markDeletedPipelines**: Set the Mark Deleted Pipelines toggle to flag pipelines as soft-deleted if they are not present anymore in the source system.
**pipelineFilterPattern** and **chartFilterPattern** : Note that the `pipelineFilterPattern` and `chartFilterPattern` both support regex as include or exclude.
{% /codeInfo %}
#### Sink Configuration
2023-07-14 14:12:27 +02:00
{% codeInfo srNumber=5 %}
2023-04-25 16:58:47 +02:00
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest` .
{% /codeInfo %}
2023-08-25 08:49:58 +02:00
{% partial file="/v1.1.2/connectors/workflow-config.md" /%}
2023-04-25 16:58:47 +02:00
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
2023-07-14 14:12:27 +02:00
type: databrickspipeline
serviceName: local_databricks_pipeline
2023-04-25 16:58:47 +02:00
serviceConnection:
config:
2023-07-14 14:12:27 +02:00
type: DatabricksPipeline
2023-04-25 16:58:47 +02:00
```
```yaml {% srNumber=1 %}
2023-07-14 14:12:27 +02:00
hostPort: localhost:443
2023-04-25 16:58:47 +02:00
```
2023-07-14 14:12:27 +02:00
2023-04-25 16:58:47 +02:00
```yaml {% srNumber=2 %}
2023-07-14 14:12:27 +02:00
token: < databricks token >
```
```yaml {% srNumber=3 %}
connectionArguments:
http_path: < http path of databricks cluster >
```
```yaml {% srNumber=4 %}
2023-04-25 16:58:47 +02:00
sourceConfig:
config:
type: PipelineMetadata
# markDeletedPipelines: True
# includeTags: True
# includeLineage: true
# pipelineFilterPattern:
# includes:
# - pipeline1
# - pipeline2
# excludes:
# - pipeline3
# - pipeline4
```
2023-07-14 14:12:27 +02:00
```yaml {% srNumber=5 %}
2023-04-25 16:58:47 +02:00
sink:
type: metadata-rest
config: {}
```
2023-08-25 08:49:58 +02:00
{% partial file="/v1.1.2/connectors/workflow-config-yaml.md" /%}
2023-04-25 16:58:47 +02:00
{% /codeBlock %}
{% /codePreview %}
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c < path-to-yaml >
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.