To configure your profiler pipeline to use Spark Engine, you need to add the `processingEngine` configuration to your existing YAML file.
{% note %}
Before configuring, ensure you have completed the [Spark Engine Prerequisites](/how-to-guides/data-quality-observability/profiler/spark-engine/prerequisites) and understand the [Partitioning Requirements](/how-to-guides/data-quality-observability/profiler/spark-engine/partitioning).
{% /note %}
## Step 1: Add Spark Engine Configuration
In your existing profiler YAML, add the `processingEngine` section under `sourceConfig.config`:
```yaml
sourceConfig:
config:
type: Profiler
# ... your existing configuration ...
processingEngine:
type: Spark
remote: sc://your_spark_connect_host:15002
config:
tempPath: your_path
{% note %}
**Important**: The `tempPath` must be accessible to all nodes in your Spark cluster. This is typically a shared filesystem path (like S3, HDFS, or a mounted network drive) that all Spark workers can read from and write to.
{% /note %}
```
## Step 2: Add Partition Configuration
In the `processor.config.tableConfig` section, add the `sparkTableProfilerConfig`: