OpenMetadata/ingestion/tests/unit/test_ometa_mlmodel.py

81 lines
2.6 KiB
Python
Raw Normal View History

# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
OpenMetadata MlModel mixin test
"""
from unittest import TestCase
import pandas as pd
import sklearn.datasets as datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from metadata.generated.schema.api.data.createMlModel import CreateMlModelRequest
from metadata.generated.schema.entity.data.mlmodel import MlModel
from metadata.generated.schema.metadataIngestion.workflow import (
OpenMetadataServerConfig,
)
from metadata.ingestion.ometa.ometa_api import OpenMetadata
class OMetaModelMixinTest(TestCase):
"""
Test the MlModel integrations from MlModel Mixin
"""
server_config = OpenMetadataServerConfig(hostPort="http://localhost:8585/api")
metadata = OpenMetadata(server_config)
iris = datasets.load_iris()
def test_get_sklearn(self):
"""
Check that we can ingest an SKlearn model
"""
df = pd.DataFrame(self.iris.data, columns=self.iris.feature_names)
y = self.iris.target
x_train, x_test, y_train, y_test = train_test_split(
df, y, test_size=0.25, random_state=70
)
dtree = DecisionTreeClassifier()
dtree.fit(x_train, y_train)
entity_create: CreateMlModelRequest = self.metadata.get_mlmodel_sklearn(
name="test-sklearn",
model=dtree,
description="Creating a test sklearn model",
)
entity: MlModel = self.metadata.create_or_update(data=entity_create)
self.assertEqual(entity.name, entity_create.name)
self.assertEqual(entity.algorithm, "DecisionTreeClassifier")
self.assertEqual(
{feature.name.__root__ for feature in entity.mlFeatures},
{
"sepal_length__cm_",
"sepal_width__cm_",
"petal_length__cm_",
"petal_width__cm_",
},
)
hyper_param = next(
iter(
param for param in entity.mlHyperParameters if param.name == "criterion"
),
None,
)
self.assertIsNotNone(hyper_param)