2022-08-09 19:10:38 +05:30
---
title: Run Datalake Connector using the CLI
2022-10-05 21:54:02 -07:00
slug: /connectors/database/datalake/cli
2022-08-09 19:10:38 +05:30
---
2022-08-27 02:57:09 +02:00
# Run Datalake using the metadata CLI
2023-01-31 20:47:40 +05:30
< Table >
2023-01-31 21:26:26 +05:30
2023-01-31 20:47:40 +05:30
| Stage | Metadata |Query Usage | Data Profiler | Data Quality | Lineage | DBT | Supported Versions |
|:------:|:------:|:-----------:|:-------------:|:------------:|:-------:|:---:|:------------------:|
2023-01-31 21:26:26 +05:30
| PROD | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | -- |
2023-01-31 20:47:40 +05:30
< / Table >
2023-01-31 21:26:26 +05:30
2023-01-31 20:47:40 +05:30
< Table >
2023-01-31 21:26:26 +05:30
2023-01-31 20:47:40 +05:30
| Lineage | Table-level | Column-level |
|:------:|:-----------:|:-------------:|
2023-01-31 21:26:26 +05:30
| ❌ | ❌ | ❌ |
2023-01-31 20:47:40 +05:30
< / Table >
2022-08-09 19:10:38 +05:30
2022-08-27 02:57:09 +02:00
In this section, we provide guides and references to use the Datalake connector.
2022-08-09 19:10:38 +05:30
2022-08-27 02:57:09 +02:00
Configure and schedule Datalake metadata and profiler workflows from the OpenMetadata UI:
- [Requirements ](#requirements )
- [Metadata Ingestion ](#metadata-ingestion )
2022-12-22 18:41:18 +05:30
- [dbt Integration ](#dbt-integration )
2022-08-27 02:57:09 +02:00
## Requirements
< InlineCallout color = "violet-70" icon = "description" bold = "OpenMetadata 0.12 or later" href = "/deployment" >
To deploy OpenMetadata, check the < a href = "/deployment" > Deployment< / a > guides.
< / InlineCallout >
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
2022-11-20 10:37:48 +05:30
< Note >
Datalake connector supports extracting metadata from file types `JSON` , `CSV` , `TSV` & `Parquet` .
< / Note >
2022-10-20 23:26:13 +05:30
** S3 Permissions **
< p > To execute metadata extraction AWS account should have enough access to fetch required data. The < strong > Bucket Policy< / strong > in AWS requires at least these permissions: < / p >
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:ListBucket"
],
"Resource": [
"arn:aws:s3:::< my bucket > ",
"arn:aws:s3:::< my bucket > /*"
]
}
]
}
```
2022-08-27 02:57:09 +02:00
### Python Requirements
2022-11-17 10:11:54 +01:00
If running OpenMetadata version greater than 0.13, you will need to install the Datalake ingestion for GCS or S3:
#### S3 installation
```bash
pip3 install "openmetadata-ingestion[datalake-s3]"
```
#### GCS installation
```bash
pip3 install "openmetadata-ingestion[datalake-gcs]"
```
2022-12-17 16:22:03 +05:30
#### Azure installation
```bash
pip3 install "openmetadata-ingestion[datalake-azure]"
```
2022-11-17 10:11:54 +01:00
#### If version <0.13
You will be installing the requirements together for S3 and GCS
2022-08-27 02:57:09 +02:00
```bash
pip3 install "openmetadata-ingestion[datalake]"
```
2022-08-09 19:10:38 +05:30
## Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Datalake.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema.
## 1. Define the YAML Config
2022-12-22 15:45:57 +05:30
#### Source Configuration - Source Config using AWS S3
2022-08-09 19:10:38 +05:30
This is a sample config for Datalake using AWS S3:
```yaml
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
awsAccessKeyId: aws access key id
awsSecretAccessKey: aws secret access key
awsRegion: aws region
bucketName: bucket name
prefix: prefix
sourceConfig:
2023-01-27 15:30:48 +01:00
type: DatabaseMetadata
2022-08-09 19:10:38 +05:30
config:
tableFilterPattern:
includes:
- ''
sink:
type: metadata-rest
config: {}
workflowConfig:
2022-08-31 15:11:11 +02:00
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
2022-08-09 19:10:38 +05:30
openMetadataServerConfig:
2022-10-03 14:52:32 +05:30
hostPort: < OpenMetadata host and port >
authProvider: < OpenMetadata auth provider >
2022-08-09 19:10:38 +05:30
```
2022-09-23 15:09:46 -07:00
The `sourceConfig` is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json ).
2022-08-09 19:10:38 +05:30
* **awsAccessKeyId**: Enter your secure access key ID for your DynamoDB connection. The specified key ID should be authorized to read all databases you want to include in the metadata ingestion workflow.
* **awsSecretAccessKey**: Enter the Secret Access Key (the passcode key pair to the key ID from above).
* **awsRegion**: Specify the region in which your DynamoDB is located. This setting is required even if you have configured a local AWS profile.
* **schemaFilterPattern** and **tableFilternPattern** : Note that the `schemaFilterPattern` and `tableFilterPattern` both support regex as `include` or `exclude` . E.g.,
2022-12-22 15:45:57 +05:30
#### Source Configuration - Service Connection using GCS
2022-08-09 19:10:38 +05:30
This is a sample config for Datalake using GCS:
```yaml
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
2022-08-27 02:57:09 +02:00
configSource:
securityConfig:
2022-08-09 19:10:38 +05:30
gcsConfig:
type: type of account
projectId: project id
privateKeyId: private key id
privateKey: private key
clientEmail: client email
clientId: client id
authUri: https://accounts.google.com/o/oauth2/auth
tokenUri: https://oauth2.googleapis.com/token
authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs
clientX509CertUrl: clientX509 Certificate Url
bucketName: bucket name
prefix: prefix
sourceConfig:
config:
tableFilterPattern:
includes:
2022-08-27 02:57:09 +02:00
- ''
2022-08-09 19:10:38 +05:30
sink:
type: metadata-rest
config: {}
workflowConfig:
2022-08-31 15:11:11 +02:00
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
2022-08-09 19:10:38 +05:30
openMetadataServerConfig:
2022-10-03 14:52:32 +05:30
hostPort: < OpenMetadata host and port >
authProvider: < OpenMetadata auth provider >
2022-08-09 19:10:38 +05:30
```
2022-09-23 15:09:46 -07:00
The `sourceConfig` is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json ).
2022-08-09 19:10:38 +05:30
* **type**: Credentials type, e.g. `service_account` .
* **projectId**
2022-08-18 11:43:45 +02:00
* **privateKey**
2022-08-09 19:10:38 +05:30
* **privateKeyId**
* **clientEmail**
* **clientId**
* **authUri**: [https://accounts.google.com/o/oauth2/auth ](https://accounts.google.com/o/oauth2/auth ) by default
* **tokenUri**: [https://oauth2.googleapis.com/token ](https://oauth2.googleapis.com/token ) by default
* **authProviderX509CertUrl**: [https://www.googleapis.com/oauth2/v1/certs ](https://www.googleapis.com/oauth2/v1/certs ) by default
* **clientX509CertUrl**
2022-08-18 11:43:45 +02:00
* **bucketName**: name of the bucket in GCS
* **Prefix**: prefix in gcs bucket
2022-12-17 16:22:03 +05:30
2022-12-22 15:45:57 +05:30
#### Source Configuration - Service Connection using Azure
2022-12-17 16:22:03 +05:30
This is a sample config for Datalake using Azure:
```yaml
# Datalake with Azure
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
clientId: client-id
clientSecret: client-secret
tenantId: tenant-id
accountName: account-name
prefix: prefix
sourceConfig:
config:
tableFilterPattern:
includes:
- ''
sink:
type: metadata-rest
config: {}
workflowConfig:
openMetadataServerConfig:
hostPort: < OpenMetadata host and port >
authProvider: < OpenMetadata auth provider >
```
The `sourceConfig` is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/security/credentials/azureCredentials.json ).
- **Client ID** : Client ID of the data storage account
- **Client Secret** : Client Secret of the account
- **Tenant ID** : Tenant ID under which the data storage account falls
- **Account Name** : Account Name of the data Storage
**schemaFilterPattern** and **tableFilternPattern** : Note that the `schemaFilterPattern` and `tableFilterPattern` both support regex as `include` or `exclude` . E.g.,
2022-08-09 19:10:38 +05:30
2022-08-27 02:57:09 +02:00
#### Source Configuration - Source Config
2022-09-23 15:09:46 -07:00
The `sourceConfig` is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json ):
2022-08-27 02:57:09 +02:00
- `markDeletedTables` : To flag tables as soft-deleted if they are not present anymore in the source system.
- `includeTables` : true or false, to ingest table data. Default is true.
- `includeViews` : true or false, to ingest views definitions.
- `databaseFilterPattern` , `schemaFilterPattern` , `tableFilternPattern` : Note that the they support regex as include or exclude. E.g.,
```yaml
tableFilterPattern:
includes:
- users
- type_test
```
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest` .
#### Workflow Configuration
The main property here is the `openMetadataServerConfig` , where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
openMetadataServerConfig:
2022-10-03 14:52:32 +05:30
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
2022-08-27 02:57:09 +02:00
```
2022-09-23 15:09:46 -07:00
We support different security providers. You can find their definitions [here ](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client ).
2022-08-27 02:57:09 +02:00
You can find the different implementation of the ingestion below.
< Collapse title = "Configure SSO in the Ingestion Workflows" >
2022-10-03 14:52:32 +05:30
### Openmetadata JWT Auth
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
2022-08-27 02:57:09 +02:00
### Auth0 SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens ](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens )
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
< / Collapse >
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c < path-to-yaml >
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.
2022-12-22 18:41:18 +05:30
## dbt Integration
2022-08-27 02:57:09 +02:00
2022-12-22 18:41:18 +05:30
You can learn more about how to ingest dbt models' definitions and their lineage [here ](/connectors/ingestion/workflows/dbt ).