215 lines
6.2 KiB
Markdown
Raw Normal View History

---
title: Run Redash Connector using the CLI
slug: /connectors/dashboard/redash/cli
---
# Run Redash using the metadata CLI
2023-04-26 17:41:42 +05:30
| Stage | PROD |
|------------|------------------------------|
| Dashboards | {% icon iconName="check" /%} |
| Charts | {% icon iconName="check" /%} |
| Owners | {% icon iconName="cross" /%} |
| Tags | {% icon iconName="cross" /%} |
| Lineage | {% icon iconName="check" /%} |
In this section, we provide guides and references to use the Redash connector.
Configure and schedule Redash metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Redash ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[redash]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/dashboard/redashConnection.json)
you can find the structure to create a connection to Redash.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**hostPort**: URL to the Redash instance.
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**username**: Specify the User to connect to Redash. It should have enough privileges to read all the metadata.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**apiKey**: API key of the redash instance to access.
{% /codeInfo %}
{% codeInfo srNumber=4 %}
**Redash Version**: (Default: 10.0.0) Redash version of your redash instance. Enter the numerical value from the [Redash Releases](https://github.com/getredash/redash/releases) page.
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=5 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/dashboardServiceMetadataPipeline.json):
**dbServiceNames**: Database Service Name for the creation of lineage, if the source supports it.
**dashboardFilterPattern**, **chartFilterPattern**: Note that the they support regex as include or exclude. E.g.,
**includeTags**: Set the Include tags toggle to control whether or not to include tags as part of metadata ingestion.
**markDeletedDashboards**: Set the Mark Deleted Dashboards toggle to flag dashboards as soft-deleted if they are not present anymore in the source system.
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=6 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=7 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: redash
serviceName: local_redash
serviceConnection:
config:
type: Redash
```
```yaml {% srNumber=1 %}
hostPort: http://localhost:5000
```
```yaml {% srNumber=2 %}
username: random
```
```yaml {% srNumber=3 %}
apiKey: api_key
```
```yaml {% srNumber=4 %}
redashVersion: 10.0.0
```
```yaml {% srNumber=5 %}
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
```
```yaml {% srNumber=6 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=7 %}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
{% /codeBlock %}
{% /codePreview %}
### Workflow Configs for Security Provider
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
## Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.