382 lines
10 KiB
Markdown
Raw Normal View History

---
title: Run Tableau Connector using the CLI
slug: /connectors/dashboard/tableau/cli
---
# Run Tableau using the metadata CLI
2023-04-26 17:41:42 +05:30
| Stage | PROD |
|------------|------------------------------|
| Dashboards | {% icon iconName="check" /%} |
| Charts | {% icon iconName="check" /%} |
| Owners | {% icon iconName="check" /%} |
| Tags | {% icon iconName="cross" /%} |
| Lineage | {% icon iconName="check" /%} |
In this section, we provide guides and references to use the Tableau connector.
Configure and schedule Tableau metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
To ingest tableau metadata, minimum `Site Role: Viewer` is requried for the tableau user.
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
To create lineage between tableau dashboard and any database service via the queries provided from Tableau Metadata API, please enable the Tableau Metadata API for your tableau server.
For more information on enabling the Tableau Metadata APIs follow the link [here](https://help.tableau.com/current/api/metadata_api/en-us/docs/meta_api_start.html)
### Python Requirements
To run the Tableau ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[tableau]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/dashboard/tableauConnection.json)
you can find the structure to create a connection to Tableau.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Tableau:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**hostPort**: URL to the Tableau instance.
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**username**: Specify the User to connect to Tableau. It should have enough privileges to read all the metadata.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**password**: Password for Tableau.
{% /codeInfo %}
{% codeInfo srNumber=4 %}
**apiVersion**: Tableau API version.
{% /codeInfo %}
{% codeInfo srNumber=5 %}
**siteName**: Tableau Site Name. To be kept empty if you are using the default Tableau site
{% /codeInfo %}
{% codeInfo srNumber=6 %}
**siteUrl**: Tableau Site Url. To be kept empty if you are using the default Tableau site
{% /codeInfo %}
{% codeInfo srNumber=7 %}
**personalAccessTokenName**: Access token. To be used if not logging in with user/password.
{% /codeInfo %}
{% codeInfo srNumber=8 %}
**personalAccessTokenSecret**: Access token Secret. To be used if not logging in with user/password.
{% /codeInfo %}
{% codeInfo srNumber=9 %}
**env**: Tableau Environment.
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=10 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/dashboardServiceMetadataPipeline.json):
**dbServiceNames**: Database Service Name for the creation of lineage, if the source supports it.
**dashboardFilterPattern**, **chartFilterPattern**: Note that the they support regex as include or exclude. E.g.,
**includeTags**: Set the Include tags toggle to control whether or not to include tags as part of metadata ingestion.
**markDeletedDashboards**: Set the Mark Deleted Dashboards toggle to flag dashboards as soft-deleted if they are not present anymore in the source system.
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=11 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=12 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
```yaml
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
```
```yaml {% srNumber=1 %}
username: username
```
```yaml {% srNumber=2 %}
password: password
```
```yaml {% srNumber=3 %}
env: tableau_prod
```
```yaml {% srNumber=4 %}
hostPort: http://localhost
```
```yaml {% srNumber=5 %}
siteName: site_name
```
```yaml {% srNumber=6 %}
siteUrl: site_url
```
```yaml {% srNumber=7 %}
apiVersion: api_version
```
```yaml {% srNumber=8 %}
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
```
```yaml {% srNumber=9 %}
# personalAccessTokenSecret: personal_access_token_secret
```
```yaml {% srNumber=10 %}
sourceConfig:
config:
type: DashboardMetadata
markDeletedDashboards: True
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
```
```yaml {% srNumber=11 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=12 %}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
{% /codeBlock %}
{% /codePreview %}
### Example Source Configurations for default and non-default tableau sites
#### 1. Sample config for default tableau site
For a default tableau site `siteName` and `siteUrl` fields should be kept as empty strings as shown in the below config.
```yaml
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
hostPort: http://localhost
username: username
password: password
apiVersion: api_version
siteName: ""
siteUrl: ""
env: tableau_prod
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
# personalAccessTokenSecret: personal_access_token_secret
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
```
#### 1. Sample config for non-default tableau site
For a non-default tableau site `siteName` and `siteUrl` fields are required.
**Note**: If `https://xxx.tableau.com/#/site/sitename/home` represents the homepage url for your tableau site, the `sitename` from the url should be entered in the `siteName` and `siteUrl` fields in the config below.
```yaml
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
username: username
password: password
env: tableau_prod
hostPort: http://localhost
siteName: openmetadata
siteUrl: openmetadata
apiVersion: api_version
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
# personalAccessTokenSecret: personal_access_token_secret
sourceConfig:
config:
type: DashboardMetadata
overrideOwner: True
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
```
### Workflow Configs for Security Provider
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
## Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.