In this section, we provide guides and references to use the AzureSQL connector.
Configure and schedule AzureSQL metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [Data Profiler](#data-profiler)
- [dbt Integration](#dbt-integration)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
Make sure if you have whitelisted ingestion container IP on Azure SQL firewall rules. Checkout [this](https://learn.microsoft.com/en-us/azure/azure-sql/database/firewall-configure?view=azuresql#use-the-azure-portal-to-manage-server-level-ip-firewall-rules) document on how to whitelist your IP using azure portal.
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the AzureSQL ingestion, you will need to install:
**username**: Specify the User to connect to AzureSQL. It should have enough privileges to read all the metadata.
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**password**: Password to connect to AzureSQL.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**hostPort**: Enter the fully qualified hostname and port number for your AzureSQL deployment in the Host and Port field.
{% /codeInfo %}
{% codeInfo srNumber=4 %}
**database**: The database of the data source is an optional parameter, if you would like to restrict the metadata reading to a single database. If left blank, OpenMetadata ingestion attempts to scan all the databases.
{% /codeInfo %}
{% codeInfo srNumber=5 %}
**driver**: Connecting to AzureSQL requires ODBC driver to be installed. Specify ODBC driver name in the field.
You can download the ODBC driver from [here](https://learn.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-ver16).In case of docker or kubernetes deployment this driver comes out of the box with version `ODBC Driver 18 for SQL Server`.
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=8 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
**includeTables**: true or false, to ingest table data. Default is true.
**includeViews**: true or false, to ingest views definitions.
**databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the they support regex as include or exclude. E.g.,
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=9 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=10 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
#### Advanced Configuration
{% codeInfo srNumber=6 %}
**Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
{% /codeInfo %}
{% codeInfo srNumber=7 %}
**Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
## Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.
## Data Profiler
The Data Profiler workflow will be using the `orm-profiler` processor.
After running a Metadata Ingestion workflow, we can run Data Profiler workflow.
While the `serviceName` will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the `serviceConnection` details from the server.
### 1. Define the YAML Config
This is a sample config for the profiler:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=11 %}
#### Source Configuration - Source Config
You can find all the definitions and types for the `sourceConfig` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
**generateSampleData**: Option to turn on/off generating sample data.
{% /codeInfo %}
{% codeInfo srNumber=12 %}
**profileSample**: Percentage of data or no. of rows we want to execute the profiler and tests on.
{% /codeInfo %}
{% codeInfo srNumber=13 %}
**threadCount**: Number of threads to use during metric computations.
{% /codeInfo %}
{% codeInfo srNumber=14 %}
**processPiiSensitive**: Optional configuration to automatically tag columns that might contain sensitive information.
{% /codeInfo %}
{% codeInfo srNumber=15 %}
**confidence**: Set the Confidence value for which you want the column to be marked
{% /codeInfo %}
{% codeInfo srNumber=16 %}
**timeoutSeconds**: Profiler Timeout in Seconds
{% /codeInfo %}
{% codeInfo srNumber=17 %}
**databaseFilterPattern**: Regex to only fetch databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=18 %}
**schemaFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=19 %}
**tableFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=20 %}
#### Processor Configuration
Choose the `orm-profiler`. Its config can also be updated to define tests from the YAML itself instead of the UI:
**tableConfig**: `tableConfig` allows you to set up some configuration at the table level.
{% /codeInfo %}
{% codeInfo srNumber=21 %}
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
{% codeInfo srNumber=22 %}
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: azuresql
serviceName: local_azuresql
sourceConfig:
config:
type: Profiler
```
```yaml {% srNumber=11 %}
generateSampleData: true
```
```yaml {% srNumber=12 %}
# profileSample: 85
```
```yaml {% srNumber=13 %}
# threadCount: 5
```
```yaml {% srNumber=14 %}
processPiiSensitive: false
```
```yaml {% srNumber=15 %}
# confidence: 80
```
```yaml {% srNumber=16 %}
# timeoutSeconds: 43200
```
```yaml {% srNumber=17 %}
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
```
```yaml {% srNumber=18 %}
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
```
```yaml {% srNumber=19 %}
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
```
```yaml {% srNumber=20 %}
processor:
type: orm-profiler
config: {} # Remove braces if adding properties
# tableConfig:
# - fullyQualifiedName: <tablefqn>
# profileSample: <numberbetween0and99> # default
# profileSample: <numberbetween0and99> # default will be 100 if omitted
- You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from [here](/connectors/ingestion/workflows/profiler)
### 2. Run with the CLI
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
```bash
metadata profile -c <path-to-yaml>
```
Note now instead of running `ingest`, we are using the `profile` command to select the Profiler workflow.
## dbt Integration
{% tilesContainer %}
{% tile
icon="mediation"
title="dbt Integration"
description="Learn more about how to ingest dbt models' definitions and their lineage."
link="/connectors/ingestion/workflows/dbt" /%}
{% /tilesContainer %}
## Related
{% tilesContainer %}
{% tile
title="Ingest with Airflow"
description="Configure the ingestion using Airflow SDK"