676 lines
18 KiB
Markdown
Raw Normal View History

---
title: Run Datalake Connector using Airflow SDK
slug: /connectors/database/datalake/airflow
---
# Run Datalake using the Airflow SDK
{% multiTablesWrapper %}
| Feature | Status |
| :----------------- | :--------------------------- |
| Stage | PROD |
| Metadata | {% icon iconName="check" /%} |
| Query Usage | {% icon iconName="cross" /%} |
| Data Profiler | {% icon iconName="check" /%} |
| Data Quality | {% icon iconName="check" /%} |
| Lineage | {% icon iconName="cross" /%} |
| DBT | {% icon iconName="check" /%} |
| Supported Versions | -- |
| Feature | Status |
| :----------- | :--------------------------- |
| Lineage | {% icon iconName="cross" /%} |
| Table-level | {% icon iconName="cross" /%} |
| Column-level | {% icon iconName="cross" /%} |
{% /multiTablesWrapper %}
In this section, we provide guides and references to use the Datalake connector.
Configure and schedule Datalake metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [dbt Integration](#dbt-integration)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
**Note:** Datalake connector supports extracting metadata from file types `JSON`, `CSV`, `TSV` & `Parquet`.
### S3 Permissions
To execute metadata extraction AWS account should have enough access to fetch required data. The <strong>Bucket Policy</strong> in AWS requires at least these permissions:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:ListBucket"
],
"Resource": [
"arn:aws:s3:::<my bucket>",
"arn:aws:s3:::<my bucket>/*"
]
}
]
}
```
### ADLS Permissions
To extract metadata from Azure ADLS (Storage Account - StorageV2), you will need an **App Registration** with the following
permissions on the Storage Account:
- Storage Blob Data Contributor
- Storage Queue Data Contributor
### Python Requirements
If running OpenMetadata version greater than 0.13, you will need to install the Datalake ingestion for GCS or S3:
#### S3 installation
```bash
pip3 install "openmetadata-ingestion[datalake-s3]"
```
#### GCS installation
```bash
pip3 install "openmetadata-ingestion[datalake-gcs]"
```
#### Azure installation
```bash
pip3 install "openmetadata-ingestion[datalake-azure]"
```
#### If version <0.13
You will be installing the requirements together for S3 and GCS
```bash
pip3 install "openmetadata-ingestion[datalake]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Datalake.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema.
## 1. Define the YAML Config
### This is a sample config for Datalake using AWS S3:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
* **awsAccessKeyId**: Enter your secure access key ID for your DynamoDB connection. The specified key ID should be authorized to read all databases you want to include in the metadata ingestion workflow.
* **awsSecretAccessKey**: Enter the Secret Access Key (the passcode key pair to the key ID from above).
* **awsRegion**: Specify the region in which your DynamoDB is located. This setting is required even if you have configured a local AWS profile.
* **schemaFilterPattern** and **tableFilternPattern**: Note that the `schemaFilterPattern` and `tableFilterPattern` both support regex as `include` or `exclude`. E.g.,
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=2 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
**includeTables**: true or false, to ingest table data. Default is true.
**includeViews**: true or false, to ingest views definitions.
**databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the filter supports regex as include or exclude. You can find examples [here](/connectors/ingestion/workflows/metadata/filter-patterns/database)
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=3 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=4 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
```
```yaml {% srNumber=1 %}
configSource:
securityConfig:
awsAccessKeyId: aws access key id
awsSecretAccessKey: aws secret access key
awsRegion: aws region
bucketName: bucket name
prefix: prefix
```
```yaml {% srNumber=2 %}
2023-05-02 11:32:28 +05:30
sourceConfig:
config:
2023-05-02 16:36:52 +05:30
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
```
```yaml {% srNumber=3 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=4 %}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
{% /codeBlock %}
{% /codePreview %}
### This is a sample config for Datalake using GCS:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=5 %}
* **type**: Credentials type, e.g. `service_account`.
* **projectId**
* **privateKey**
* **privateKeyId**
* **clientEmail**
* **clientId**
* **authUri**: [https://accounts.google.com/o/oauth2/auth](https://accounts.google.com/o/oauth2/auth) by default
* **tokenUri**: [https://oauth2.googleapis.com/token](https://oauth2.googleapis.com/token) by default
* **authProviderX509CertUrl**: [https://www.googleapis.com/oauth2/v1/certs](https://www.googleapis.com/oauth2/v1/certs) by default
* **clientX509CertUrl**
* **bucketName**: name of the bucket in GCS
* **Prefix**: prefix in gcs bucket
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=6 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
**includeTables**: true or false, to ingest table data. Default is true.
**includeViews**: true or false, to ingest views definitions.
**databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the filter supports regex as include or exclude. You can find examples [here](/connectors/ingestion/workflows/metadata/filter-patterns/database)
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=7 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=8 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
```
```yaml {% srNumber=5 %}
gcsConfig:
type: type of account
projectId: project id
privateKeyId: private key id
privateKey: private key
clientEmail: client email
clientId: client id
authUri: https://accounts.google.com/o/oauth2/auth
tokenUri: https://oauth2.googleapis.com/token
authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs
clientX509CertUrl: clientX509 Certificate Url
bucketName: bucket name
prefix: prefix
```
```yaml {% srNumber=6 %}
2023-05-02 11:32:28 +05:30
sourceConfig:
config:
2023-05-02 16:36:52 +05:30
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
```
```yaml {% srNumber=7 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=8 %}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
{% /codeBlock %}
{% /codePreview %}
### This is a sample config for Datalake using Azure:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=9 %}
- **Client ID** : Client ID of the data storage account
- **Client Secret** : Client Secret of the account
- **Tenant ID** : Tenant ID under which the data storage account falls
- **Account Name** : Account Name of the data Storage
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=10 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
**includeTables**: true or false, to ingest table data. Default is true.
**includeViews**: true or false, to ingest views definitions.
**databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the filter supports regex as include or exclude. You can find examples [here](/connectors/ingestion/workflows/metadata/filter-patterns/database)
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=11 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=12 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
# Datalake with Azure
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
```
```yaml {% srNumber=9 %}
securityConfig:
clientId: client-id
clientSecret: client-secret
tenantId: tenant-id
accountName: account-name
prefix: prefix
```
```yaml {% srNumber=10 %}
2023-05-02 11:32:28 +05:30
sourceConfig:
config:
2023-05-02 16:36:52 +05:30
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
```
```yaml {% srNumber=11 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=12 %}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
{% /codeBlock %}
{% /codePreview %}
### Workflow Configs for Security Provider
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
## Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
### 2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=13 %}
#### Import necessary modules
The `Workflow` class that is being imported is a part of a metadata ingestion framework, which defines a process of getting data from different sources and ingesting it into a central metadata repository.
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
{% /codeInfo %}
{% codeInfo srNumber=14 %}
**Default arguments for all tasks in the Airflow DAG.**
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
{% /codeInfo %}
{% codeInfo srNumber=15 %}
- **config**: Specifies config for the metadata ingestion as we prepare above.
{% /codeInfo %}
{% codeInfo srNumber=16 %}
- **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `Workflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
{% /codeInfo %}
{% codeInfo srNumber=17 %}
- **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
- For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag).
{% /codeInfo %}
Note that from connector to connector, this recipe will always be the same.
By updating the `YAML configuration`, you will be able to extract metadata from different sources.
{% /codeInfoContainer %}
{% codeBlock fileName="filename.py" %}
```python {% srNumber=13 %}
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
```
```python {% srNumber=14 %}
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
```
```python {% srNumber=15 %}
config = """
<your YAML configuration>
"""
```
```python {% srNumber=16 %}
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
```
```python {% srNumber=17 %}
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
{% /codeBlock %}
{% /codePreview %}
## dbt Integration
{% tilesContainer %}
{% tile
icon="mediation"
title="dbt Integration"
description="Learn more about how to ingest dbt models' definitions and their lineage."
link="/connectors/ingestion/workflows/dbt" /%}
{% /tilesContainer %}
## Related
{% tilesContainer %}
{% tile
title="Ingest with the CLI"
description="Run a one-time ingestion using the metadata CLI"
link="/connectors/database/datalake/cli"
/ %}
{% /tilesContainer %}