437 lines
14 KiB
Markdown
Raw Normal View History

---
title: Run DeltaLake Connector using Airflow SDK
slug: /connectors/database/deltalake/airflow
---
# Run Deltalake using the Airflow SDK
{% multiTablesWrapper %}
| Feature | Status |
| :----------------- | :--------------------------- |
| Stage | PROD |
| Metadata | {% icon iconName="check" /%} |
| Query Usage | {% icon iconName="cross" /%} |
| Data Profiler | {% icon iconName="cross" /%} |
| Data Quality | {% icon iconName="cross" /%} |
| Lineage | Partially via Views |
| DBT | {% icon iconName="cross" /%} |
| Supported Versions | -- |
| Feature | Status |
| :----------- | :--------------------------- |
| Lineage | Partially via Views |
| Table-level | {% icon iconName="check" /%} |
| Column-level | {% icon iconName="check" /%} |
{% /multiTablesWrapper %}
In this section, we provide guides and references to use the Deltalake connector.
Configure and schedule Deltalake metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [dbt Integration](#dbt-integration)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Deltalake ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[deltalake]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/deltaLakeConnection.json)
you can find the structure to create a connection to Deltalake.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Deltalake:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**Metastore Host Port**: Enter the Host & Port of Hive Metastore Service to configure the Spark Session. Either
of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
**Metastore File Path**: Enter the file path to local Metastore in case Spark cluster is running locally. Either
of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
**Metastore DB**: The JDBC connection to the underlying Hive metastore DB. Either
of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
**appName (Optional)**: Enter the app name of spark session.
**Connection Arguments (Optional)**: Key-Value pairs that will be used to pass extra `config` elements to the Spark
Session builder.
We are internally running with `pyspark` 3.X and `delta-lake` 2.0.0. This means that we need to consider Spark
configuration options for 3.X.
##### Metastore Host Port
When connecting to an External Metastore passing the parameter `Metastore Host Port`, we will be preparing a Spark Session with the configuration
```
.config("hive.metastore.uris", "thrift://{connection.metastoreHostPort}")
```
Then, we will be using the `catalog` functions from the Spark Session to pick up the metadata exposed by the Hive Metastore.
##### Metastore File Path
If instead we use a local file path that contains the metastore information (e.g., for local testing with the default `metastore_db` directory), we will set
```
.config("spark.driver.extraJavaOptions", "-Dderby.system.home={connection.metastoreFilePath}")
```
To update the `Derby` information. More information about this in a great [SO thread](https://stackoverflow.com/questions/38377188/how-to-get-rid-of-derby-log-metastore-db-from-spark-shell).
- You can find all supported configurations [here](https://spark.apache.org/docs/latest/configuration.html)
- If you need further information regarding the Hive metastore, you can find
it [here](https://spark.apache.org/docs/3.0.0-preview/sql-data-sources-hive-tables.html), and in The Internals of
Spark SQL [book](https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql-hive-metastore.html).
##### Metastore Database
You can also connect to the metastore by directly pointing to the Hive Metastore db, e.g., `jdbc:mysql://localhost:3306/demo_hive`.
Here, we will need to inform all the common database settings (url, username, password), and the driver class name for JDBC metastore.
You will need to provide the driver to the ingestion image, and pass the `classpath` which will be used in the Spark Configuration under `sparks.driver.extraClassPath`.
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=4 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
**includeTables**: true or false, to ingest table data. Default is true.
**includeViews**: true or false, to ingest views definitions.
**databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the filter supports regex as include or exclude. You can find examples [here](/connectors/ingestion/workflows/metadata/filter-patterns/database)
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=5 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=6 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
#### Advanced Configuration
{% codeInfo srNumber=2 %}
**Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: deltalake
serviceName: "<service name>"
serviceConnection:
config:
type: DeltaLake
```
```yaml {% srNumber=1 %}
metastoreConnection:
# Pick only of the three
## 1. Hive Service Thrift Connection
metastoreHostPort: "<metastore host port>"
## 2. Hive Metastore db connection
# metastoreDb: jdbc:mysql://localhost:3306/demo_hive
# username: username
# password: password
# driverName: org.mariadb.jdbc.Driver
# jdbcDriverClassPath: /some/path/
## 3. Local file for Testing
# metastoreFilePath: "<path_to_metastore>/metastore_db"
appName: MyApp
```
```yaml {% srNumber=2 %}
# connectionOptions:
# key: value
```
```yaml {% srNumber=3 %}
# connectionArguments:
# key: value
```
```yaml {% srNumber=4 %}
2023-05-02 11:32:28 +05:30
sourceConfig:
config:
2023-05-02 16:36:52 +05:30
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
```
```yaml {% srNumber=5 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=6 %}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
{% /codeBlock %}
{% /codePreview %}
### Workflow Configs for Security Provider
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
## Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
### 2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=7 %}
#### Import necessary modules
The `Workflow` class that is being imported is a part of a metadata ingestion framework, which defines a process of getting data from different sources and ingesting it into a central metadata repository.
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
{% /codeInfo %}
{% codeInfo srNumber=8 %}
**Default arguments for all tasks in the Airflow DAG.**
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
{% /codeInfo %}
{% codeInfo srNumber=9 %}
- **config**: Specifies config for the metadata ingestion as we prepare above.
{% /codeInfo %}
{% codeInfo srNumber=10 %}
- **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `Workflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
{% /codeInfo %}
{% codeInfo srNumber=11 %}
- **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
- For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag).
{% /codeInfo %}
Note that from connector to connector, this recipe will always be the same.
By updating the `YAML configuration`, you will be able to extract metadata from different sources.
{% /codeInfoContainer %}
{% codeBlock fileName="filename.py" %}
```python {% srNumber=7 %}
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
```
```python {% srNumber=8 %}
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
```
```python {% srNumber=9 %}
config = """
<your YAML configuration>
"""
```
```python {% srNumber=10 %}
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
```
```python {% srNumber=11 %}
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
{% /codeBlock %}
{% /codePreview %}
## dbt Integration
{% tilesContainer %}
{% tile
icon="mediation"
title="dbt Integration"
description="Learn more about how to ingest dbt models' definitions and their lineage."
link="/connectors/ingestion/workflows/dbt" /%}
{% /tilesContainer %}
## Related
{% tilesContainer %}
{% tile
title="Ingest with the CLI"
description="Run a one-time ingestion using the metadata CLI"
link="/connectors/database/deltalake/cli"
/ %}
{% /tilesContainer %}