In this section, we provide guides and references to use the Vertica connector.
Configure and schedule Vertica metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [Data Profiler](#data-profiler)
- [dbt Integration](#dbt-integration)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Permissions
To run the ingestion we need a user with `SELECT` grants on the schemas that you'd like to ingest, as well as to the
`V_CATALOG` schema. You can grant those as follows for the schemas in your database:
```sql
CREATE USER openmetadata IDENTIFIED BY 'password';
GRANT SELECT ON ALL TABLES IN SCHEMA PUBLIC TO openmetadata;
GRANT SELECT ON ALL TABLES IN SCHEMA V_CATALOG TO openmetadata;
```
Note that these `GRANT`s won't be applied to any new table created on the schema unless the schema
has [Inherited Privileges](https://www.vertica.com/docs/8.1.x/HTML/index.htm#Authoring/AdministratorsGuide/Security/DBUsersAndPrivileges/GrantInheritedPrivileges.htm)
```sql
ALTER SCHEMA s1 DEFAULT INCLUDE PRIVILEGES;
-- If using the PUBLIC schema
ALTER SCHEMA "<db>.public" DEFAULT INCLUDE PRIVILEGES;
```
#### Lineage and Usage
If you also want to run the Lineage and Usage workflows, then the user needs to be granted permissions to the
`V_MONITOR` schema:
```sql
GRANT SELECT ON ALL TABLES IN SCHEMA V_MONITOR TO openmetadata;
```
Note that this setting might only grant visibility to the queries executed by this user. A more complete approach
will be to grant the `SYSMONITOR` role to the `openmetadata` user:
```sql
GRANT SYSMONITOR TO openmetadata;
ALTER USER openmetadata DEFAULT ROLE SYSMONITOR;
```
#### Profiler
To run the profiler, it's not enough to have `USAGE` permissions to the schema as we need to `SELECT` the tables
in there. Therefore, you'll need to grant `SELECT` on all tables for the schemas:
```sql
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO openmetadata;
```
### Python Requirements
To run the Vertica ingestion, you will need to install:
**username**: Specify the User to connect to Vertica. It should have enough privileges to read all the metadata.
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**password**: Password to connect to Vertica.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**hostPort**: Enter the fully qualified hostname and port number for your Vertica deployment in the Host and Port field.
{% /codeInfo %}
{% codeInfo srNumber=4 %}
**database**: Database of the data source. This is optional parameter, if you would like to restrict the metadata reading to a single database. When left blank, OpenMetadata Ingestion attempts to scan all the databases.
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=7 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
**includeTables**: true or false, to ingest table data. Default is true.
**includeViews**: true or false, to ingest views definitions.
**databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the filter supports regex as include or exclude. You can find examples [here](/connectors/ingestion/workflows/metadata/filter-patterns/database)
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=9 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
#### Advanced Configuration
{% codeInfo srNumber=5 %}
**Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
{% /codeInfo %}
{% codeInfo srNumber=6 %}
**Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
## Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.
## Data Profiler
The Data Profiler workflow will be using the `orm-profiler` processor.
After running a Metadata Ingestion workflow, we can run Data Profiler workflow.
While the `serviceName` will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the `serviceConnection` details from the server.
### 1. Define the YAML Config
This is a sample config for the profiler:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=10 %}
#### Source Configuration - Source Config
You can find all the definitions and types for the `sourceConfig` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
**generateSampleData**: Option to turn on/off generating sample data.
{% /codeInfo %}
{% codeInfo srNumber=11 %}
**profileSample**: Percentage of data or no. of rows we want to execute the profiler and tests on.
{% /codeInfo %}
{% codeInfo srNumber=12 %}
**threadCount**: Number of threads to use during metric computations.
{% /codeInfo %}
{% codeInfo srNumber=13 %}
**processPiiSensitive**: Optional configuration to automatically tag columns that might contain sensitive information.
{% /codeInfo %}
{% codeInfo srNumber=14 %}
**confidence**: Set the Confidence value for which you want the column to be marked
{% /codeInfo %}
{% codeInfo srNumber=15 %}
**timeoutSeconds**: Profiler Timeout in Seconds
{% /codeInfo %}
{% codeInfo srNumber=16 %}
**databaseFilterPattern**: Regex to only fetch databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=17 %}
**schemaFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=18 %}
**tableFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=19 %}
#### Processor Configuration
Choose the `orm-profiler`. Its config can also be updated to define tests from the YAML itself instead of the UI:
**tableConfig**: `tableConfig` allows you to set up some configuration at the table level.
{% /codeInfo %}
{% codeInfo srNumber=20 %}
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
{% codeInfo srNumber=21 %}
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: vertica
serviceName: local_vertica
sourceConfig:
config:
type: Profiler
```
```yaml {% srNumber=10 %}
generateSampleData: true
```
```yaml {% srNumber=11 %}
# profileSample: 85
```
```yaml {% srNumber=12 %}
# threadCount: 5
```
```yaml {% srNumber=13 %}
processPiiSensitive: false
```
```yaml {% srNumber=14 %}
# confidence: 80
```
```yaml {% srNumber=15 %}
# timeoutSeconds: 43200
```
```yaml {% srNumber=16 %}
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
```
```yaml {% srNumber=17 %}
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
```
```yaml {% srNumber=18 %}
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
```
```yaml {% srNumber=19 %}
processor:
type: orm-profiler
config: {} # Remove braces if adding properties
# tableConfig:
# - fullyQualifiedName: <tablefqn>
# profileSample: <numberbetween0and99> # default
# profileSample: <numberbetween0and99> # default will be 100 if omitted
- You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from [here](/connectors/ingestion/workflows/profiler)
### 2. Run with the CLI
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
```bash
metadata profile -c <path-to-yaml>
```
Note now instead of running `ingest`, we are using the `profile` command to select the Profiler workflow.
## dbt Integration
{% tilesContainer %}
{% tile
icon="mediation"
title="dbt Integration"
description="Learn more about how to ingest dbt models' definitions and their lineage."
link="/connectors/ingestion/workflows/dbt" /%}
{% /tilesContainer %}
## Related
{% tilesContainer %}
{% tile
title="Ingest with Airflow"
description="Configure the ingestion using Airflow SDK"