334 lines
9.5 KiB
Markdown
Raw Normal View History

---
title: Run Fivetran Connector using Airflow SDK
slug: /connectors/pipeline/fivetran/airflow
---
# Run Fivetran using the Airflow SDK
In this section, we provide guides and references to use the Fivetran connector.
Configure and schedule Fivetran metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{% /inlineCallout %}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
To access Fivetran APIs, a Fivetran account on a Standard, Enterprise, or Business Critical plan is required.
### Python Requirements
To run the Fivetran ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[fivetran]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/pipeline/fivetranConnection.json)
you can find the structure to create a connection to Fivetran.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Fivetran:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**apiKey**: Fivetran API Key.
Follow the steps mentioned below to generate the Fivetran API key and API secret:
- Click your user name in your Fivetran dashboard.
- Click API Key.
- Click Generate API key. (If you already have an API key, then the button text is Generate new API key.)
- Make a note of the key and secret as they won't be displayed once you close the page or navigate away.
For more detailed documentation visit [here](https://fivetran.com/docs/rest-api/getting-started).
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**apiSecret**: Fivetran API Secret.
From the above step where the API key is generated copy the the API secret
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**hostPort**: HostPort of the Fivetran instance.
Hostport of the Fivetran instance that the connection will be made to
By default OpenMetadata will use `https://api.fivetran.com` to connect to the Fivetran APIs.
{% /codeInfo %}
{% codeInfo srNumber=4 %}
**limit**: Fivetran API Limit For Pagination.
This refers to the maximum number of records that can be returned in a single page of results when using Fivetran's API for pagination.
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=5 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/pipelineServiceMetadataPipeline.json):
**dbServiceNames**: Database Service Name for the creation of lineage, if the source supports it.
**includeTags**: Set the 'Include Tags' toggle to control whether to include tags as part of metadata ingestion.
**markDeletedPipelines**: Set the Mark Deleted Pipelines toggle to flag pipelines as soft-deleted if they are not present anymore in the source system.
**pipelineFilterPattern** and **chartFilterPattern**: Note that the `pipelineFilterPattern` and `chartFilterPattern` both support regex as include or exclude.
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=6 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=7 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: fivetran
serviceName: local_fivetran
serviceConnection:
config:
type: Fivetran
```
```yaml {% srNumber=1 %}
apiKey: <fivetran api key>
```
```yaml {% srNumber=2 %}
apiSecret: <fivetran api secret>
```
```yaml {% srNumber=3 %}
# hostPort: https://api.fivetran.com (default)
```
```yaml {% srNumber=4 %}
# limit: 1000 (default)
```
```yaml {% srNumber=5 %}
sourceConfig:
config:
type: PipelineMetadata
# markDeletedPipelines: True
# includeTags: True
# includeLineage: true
# pipelineFilterPattern:
# includes:
# - pipeline1
# - pipeline2
# excludes:
# - pipeline3
# - pipeline4
```
```yaml {% srNumber=6 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=7 %}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
{% /codeBlock %}
{% /codePreview %}
### Workflow Configs for Security Provider
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
## Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
### 2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=8 %}
#### Import necessary modules
The `Workflow` class that is being imported is a part of a metadata ingestion framework, which defines a process of getting data from different sources and ingesting it into a central metadata repository.
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
{% /codeInfo %}
{% codeInfo srNumber=9 %}
**Default arguments for all tasks in the Airflow DAG.**
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
{% /codeInfo %}
{% codeInfo srNumber=10 %}
- **config**: Specifies config for the metadata ingestion as we prepare above.
{% /codeInfo %}
{% codeInfo srNumber=11 %}
- **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `Workflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
{% /codeInfo %}
{% codeInfo srNumber=12 %}
- **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
- For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag).
{% /codeInfo %}
Note that from connector to connector, this recipe will always be the same.
By updating the `YAML configuration`, you will be able to extract metadata from different sources.
{% /codeInfoContainer %}
{% codeBlock fileName="filename.py" %}
```python {% srNumber=8 %}
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
```
```python {% srNumber=9 %}
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
```
```python {% srNumber=10 %}
config = """
<your YAML configuration>
"""
```
```python {% srNumber=11 %}
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
```
```python {% srNumber=12 %}
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
{% /codeBlock %}
{% /codePreview %}