2023-04-17 16:45:47 +02:00
---
title: Run Mode Connector using the CLI
2023-05-04 12:37:18 -07:00
slug: /connectors/dashboard/mode/cli
2023-04-17 16:45:47 +02:00
---
# Run Mode using the metadata CLI
2023-04-26 17:41:42 +05:30
| Stage | PROD |
|------------|------------------------------|
| Dashboards | {% icon iconName="check" /%} |
| Charts | {% icon iconName="check" /%} |
| Owners | {% icon iconName="cross" /%} |
| Tags | {% icon iconName="cross" /%} |
| Datamodels | {% icon iconName="cross" /%} |
| Lineage | {% icon iconName="check" /%} |
2023-04-17 16:45:47 +02:00
In this section, we provide guides and references to use the Mode connector.
Configure and schedule Mode metadata and profiler workflows from the OpenMetadata UI:
- [Requirements ](#requirements )
- [Metadata Ingestion ](#metadata-ingestion )
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
2023-04-21 20:14:41 +05:30
OpenMetadata relies on Mode's API, which is exclusive to members of the Mode Business Workspace. This means that only resources that belong to a Mode Business Workspace can be accessed via the API.
2023-04-17 16:45:47 +02:00
### Python Requirements
To run the Mode ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[mode]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/dashboard/modeConnection.json )
you can find the structure to create a connection to Mode.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json )
### 1. Define the YAML Config
This is a sample config for Mode:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
2023-04-21 20:14:41 +05:30
**hostPort**: Host and Port Mode Dashboard.
The hostPort parameter specifies the host and port of the Mode server. This should be specified as a string in the format `https://app.mode.com` .
2023-04-17 16:45:47 +02:00
{% /codeInfo %}
{% codeInfo srNumber=2 %}
2023-04-21 20:14:41 +05:30
**accessToken**: Access Token for Mode Dashboard.
Get the Access Token by following below mentioned steps:
- Navigate to your Mode homepage.
- Click on your name in the upper left corner and click My Account.
- Click on API Tokens on the left side.
- To generate a new API token and password, enter a token name and click `Create token` .
- Copy the generated access token and password.
For detailed information visit [here ](https://mode.com/developer/api-reference/introduction/ ).
2023-04-17 16:45:47 +02:00
{% /codeInfo %}
{% codeInfo srNumber=3 %}
2023-04-21 20:14:41 +05:30
**accessTokenPassword**: Access Token Password for Mode Dashboard.
Copy the access token password from the step above where a new token is generated.
For detailed information visit [here ](https://mode.com/developer/api-reference/introduction/ ).
{% /codeInfo %}
{% codeInfo srNumber=4 %}
2023-04-17 16:45:47 +02:00
**workspaceName**: Mode Workspace Name.
2023-04-21 20:14:41 +05:30
Name of the mode workspace from where the metadata is to be fetched.
2023-04-17 16:45:47 +02:00
{% /codeInfo %}
#### Source Configuration - Source Config
2023-04-21 20:14:41 +05:30
{% codeInfo srNumber=5 %}
2023-04-17 16:45:47 +02:00
The `sourceConfig` is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/dashboardServiceMetadataPipeline.json ):
2023-04-21 11:51:13 +02:00
- **dbServiceNames**: Database Service Names for ingesting lineage if the source supports it.
- **dashboardFilterPattern**, **chartFilterPattern** , **dataModelFilterPattern** : Note that all of them support regex as include or exclude. E.g., "My dashboard, My dash.*, .*Dashboard".
- **includeOwners**: Set the 'Include Owners' toggle to control whether to include owners to the ingested entity if the owner email matches with a user stored in the OM server as part of metadata ingestion. If the ingested entity already exists and has an owner, the owner will not be overwritten.
- **includeTags**: Set the 'Include Tags' toggle to control whether to include tags in metadata ingestion.
- **includeDataModels**: Set the 'Include Data Models' toggle to control whether to include tags as part of metadata ingestion.
- **markDeletedDashboards**: Set the 'Mark Deleted Dashboards' toggle to flag dashboards as soft-deleted if they are not present anymore in the source system.
2023-04-17 16:45:47 +02:00
{% /codeInfo %}
#### Sink Configuration
2023-04-21 20:14:41 +05:30
{% codeInfo srNumber=6 %}
2023-04-17 16:45:47 +02:00
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest` .
{% /codeInfo %}
2023-06-30 12:25:11 +02:00
{% partial file="workflow-config.md" /%}
2023-04-17 16:45:47 +02:00
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: mode
serviceName: local_mode
serviceConnection:
config:
type: Mode
```
```yaml {% srNumber=1 %}
2023-04-21 20:14:41 +05:30
hostPort: https://app.mode.com
2023-04-17 16:45:47 +02:00
```
```yaml {% srNumber=2 %}
2023-04-21 20:14:41 +05:30
access_token: access_token
2023-04-17 16:45:47 +02:00
```
```yaml {% srNumber=3 %}
2023-04-21 20:14:41 +05:30
access_token_password: access_token_password
2023-04-17 16:45:47 +02:00
```
```yaml {% srNumber=4 %}
2023-04-21 20:14:41 +05:30
workspace_name: workspace_name
```
```yaml {% srNumber=5 %}
2023-04-17 16:45:47 +02:00
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
```
2023-04-21 20:14:41 +05:30
```yaml {% srNumber=6 %}
2023-04-17 16:45:47 +02:00
sink:
type: metadata-rest
config: {}
```
2023-06-30 12:25:11 +02:00
{% partial file="workflow-config-yaml.md" /%}
2023-04-17 16:45:47 +02:00
{% /codeBlock %}
{% /codePreview %}
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c < path-to-yaml >
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.