2023-04-17 16:45:47 +02:00
---
title: Run Salesforce Connector using Airflow SDK
2023-05-04 12:37:18 -07:00
slug: /connectors/database/salesforce/airflow
2023-04-17 16:45:47 +02:00
---
# Run Salesforce using the Airflow SDK
{% multiTablesWrapper %}
| Feature | Status |
| :----------------- | :--------------------------- |
| Stage | PROD |
| Metadata | {% icon iconName="check" /%} |
| Query Usage | {% icon iconName="cross" /%} |
| Data Profiler | {% icon iconName="check" /%} |
| Data Quality | {% icon iconName="check" /%} |
| Lineage | {% icon iconName="cross" /%} |
| DBT | {% icon iconName="cross" /%} |
| Supported Versions | -- |
| Feature | Status |
| :----------- | :--------------------------- |
| Lineage | {% icon iconName="cross" /%} |
| Table-level | {% icon iconName="cross" /%} |
| Column-level | {% icon iconName="cross" /%} |
{% /multiTablesWrapper %}
In this section, we provide guides and references to use the Salesforce connector.
Configure and schedule Salesforce metadata and profiler workflows from the OpenMetadata UI:
- [Requirements ](#requirements )
- [Metadata Ingestion ](#metadata-ingestion )
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
2023-04-22 22:02:32 +05:30
Following are the permissions you will require to fetch the metadata from Salesforce.
**API Access**: You must have the API Enabled permission in your Salesforce organization.
**Object Permissions**: You must have read access to the Salesforce objects that you want to ingest.
2023-04-17 16:45:47 +02:00
### Python Requirements
To run the Salesforce ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[salesforce]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/salesforceConnection.json )
you can find the structure to create a connection to Salesforce.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json )
### 1. Define the YAML Config
This is a sample config for Salesforce:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
2023-04-22 22:02:32 +05:30
**username**: Username to connect to the Salesforce. This user should have the access as defined in requirements.
2023-04-17 16:45:47 +02:00
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**password**: Password to connect to Salesforce.
{% /codeInfo %}
{% codeInfo srNumber=4 %}
2023-04-22 22:02:32 +05:30
**securityToken**: Salesforce Security Token is required to access the metadata through APIs. You can checkout [this doc ](https://help.salesforce.com/s/articleView?id=sf.user_security_token.htm&type=5 ) on how to get the security token.
2023-04-17 16:45:47 +02:00
{% /codeInfo %}
{% codeInfo srNumber=5 %}
2023-04-22 22:02:32 +05:30
**sobjectName**: Specify the Salesforce Object Name in case you want to ingest a specific object. If left blank, we will ingest all the Objects.
2023-04-17 16:45:47 +02:00
{% /codeInfo %}
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=6 %}
**salesforceApiVersion**: Follow the steps mentioned [here ](https://help.salesforce.com/s/articleView?id=000386929&type=1 ) to get the API version. Enter the numerical value in the field, For example `42.0` .
{% /codeInfo %}
{% codeInfo srNumber=7 %}
**salesforceDomain**: When connecting to Salesforce, you can specify the domain to use for accessing the platform. The common domains include `login` and `test` , and you can also utilize Salesforce My Domain.
By default, the domain `login` is used for accessing Salesforce.
{% /codeInfo %}
2023-04-17 16:45:47 +02:00
#### Source Configuration - Source Config
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=10 %}
2023-04-17 16:45:47 +02:00
The `sourceConfig` is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json ):
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
**includeTables**: true or false, to ingest table data. Default is true.
**includeViews**: true or false, to ingest views definitions.
2023-04-19 06:31:55 +02:00
**databaseFilterPattern**, **schemaFilterPattern** , **tableFilternPattern** : Note that the filter supports regex as include or exclude. You can find examples [here ](/connectors/ingestion/workflows/metadata/filter-patterns/database )
2023-04-17 16:45:47 +02:00
{% /codeInfo %}
#### Sink Configuration
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=11 %}
2023-04-17 16:45:47 +02:00
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest` .
{% /codeInfo %}
2023-06-30 12:25:11 +02:00
{% partial file="workflow-config.md" /%}
2023-04-17 16:45:47 +02:00
#### Advanced Configuration
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=8 %}
2023-04-17 16:45:47 +02:00
**Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
{% /codeInfo %}
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=9 %}
2023-04-17 16:45:47 +02:00
**Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: salesforce
serviceName: local_salesforce
serviceConnection:
config:
type: Salesforce
```
```yaml {% srNumber=1 %}
username: username
```
```yaml {% srNumber=2 %}
password: password
```
```yaml {% srNumber=4 %}
securityToken: securityToken
```
```yaml {% srNumber=5 %}
sobjectName: sobjectName
```
```yaml {% srNumber=6 %}
2023-05-18 10:53:44 +05:30
salesforceApiVersion: 42.0
```
```yaml {% srNumber=7 %}
salesforceDomain: login
```
```yaml {% srNumber=8 %}
2023-04-17 16:45:47 +02:00
# connectionOptions:
# key: value
```
2023-05-18 10:53:44 +05:30
```yaml {% srNumber=9 %}
2023-04-17 16:45:47 +02:00
# connectionArguments:
# key: value
```
2023-05-18 10:53:44 +05:30
```yaml {% srNumber=10 %}
2023-05-02 11:32:28 +05:30
sourceConfig:
config:
2023-05-02 16:36:52 +05:30
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
2023-04-17 16:45:47 +02:00
```
2023-05-18 10:53:44 +05:30
```yaml {% srNumber=11 %}
2023-04-17 16:45:47 +02:00
sink:
type: metadata-rest
config: {}
```
2023-06-30 12:25:11 +02:00
{% partial file="workflow-config-yaml.md" /%}
2023-04-17 16:45:47 +02:00
{% /codeBlock %}
{% /codePreview %}
### 2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
{% codePreview %}
{% codeInfoContainer %}
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=13 %}
2023-04-17 16:45:47 +02:00
#### Import necessary modules
The `Workflow` class that is being imported is a part of a metadata ingestion framework, which defines a process of getting data from different sources and ingesting it into a central metadata repository.
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
{% /codeInfo %}
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=14 %}
2023-04-17 16:45:47 +02:00
**Default arguments for all tasks in the Airflow DAG.**
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
{% /codeInfo %}
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=15 %}
2023-04-17 16:45:47 +02:00
- **config**: Specifies config for the metadata ingestion as we prepare above.
{% /codeInfo %}
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=16 %}
2023-04-17 16:45:47 +02:00
- **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `Workflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
{% /codeInfo %}
2023-05-18 10:53:44 +05:30
{% codeInfo srNumber=17 %}
2023-04-17 16:45:47 +02:00
- **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
- For more Airflow DAGs creation details visit [here ](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag ).
{% /codeInfo %}
Note that from connector to connector, this recipe will always be the same.
By updating the `YAML configuration` , you will be able to extract metadata from different sources.
{% /codeInfoContainer %}
{% codeBlock fileName="filename.py" %}
2023-05-18 10:53:44 +05:30
```python {% srNumber=13 %}
2023-04-17 16:45:47 +02:00
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
```
2023-05-18 10:53:44 +05:30
```python {% srNumber=14 %}
2023-04-17 16:45:47 +02:00
default_args = {
"owner": "user_name",
"email": ["username@org .com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
```
2023-05-18 10:53:44 +05:30
```python {% srNumber=15 %}
2023-04-17 16:45:47 +02:00
config = """
< your YAML configuration >
"""
```
2023-05-18 10:53:44 +05:30
```python {% srNumber=16 %}
2023-04-17 16:45:47 +02:00
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
```
2023-05-18 10:53:44 +05:30
```python {% srNumber=17 %}
2023-04-17 16:45:47 +02:00
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * * ',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
{% /codeBlock %}
{% /codePreview %}
## Related
{% tilesContainer %}
{% tile
title="Ingest with the CLI"
description="Run a one-time ingestion using the metadata CLI"
link="/connectors/database/salesforce/cli"
/ %}
{% /tilesContainer %}