135 lines
3.6 KiB
Markdown
Raw Normal View History

---
title: Run Mlflow Connector using the CLI
slug: /connectors/ml-model/mlflow/cli
---
# Run Mlflow using the metadata CLI
In this section, we provide guides and references to use the Mlflow connector.
Configure and schedule Mlflow metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Mlflow ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[mlflow]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/mlmodel/mlflowConnection.json)
you can find the structure to create a connection to Mlflow.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadatablob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Mlflow:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**trackingUri**: Mlflow Experiment tracking URI. E.g., http://localhost:5000
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**registryUri**: Mlflow Model registry backend. E.g., mysql+pymysql://mlflow:password@localhost:3307/experiments
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=3 %}
The sourceConfig is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/messagingServiceMetadataPipeline.json):
**markDeletedMlModels**: Set the Mark Deleted Ml Models toggle to flag ml models as soft-deleted if they are not present anymore in the source system.
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=4 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
{% partial file="workflow-config.md" /%}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: mlflow
serviceName: local_mlflow
serviceConnection:
config:
type: Mlflow
```
```yaml {% srNumber=1 %}
trackingUri: http://localhost:5000
```
```yaml {% srNumber=2 %}
registryUri: mysql+pymysql://mlflow:password@localhost:3307/experiments
```
```yaml {% srNumber=3 %}
sourceConfig:
config:
type: MlModelMetadata
# markDeletedMlModels: true
```
```yaml {% srNumber=4 %}
sink:
type: metadata-rest
config: {}
```
{% partial file="workflow-config-yaml.md" /%}
{% /codeBlock %}
{% /codePreview %}
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.