273 lines
7.9 KiB
Markdown
Raw Normal View History

---
title: Run Spline Connector using Airflow SDK
slug: /connectors/pipeline/spline/airflow
---
# Run Spline using the Airflow SDK
In this section, we provide guides and references to use the Spline connector.
Configure and schedule Spline metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{% /inlineCallout %}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
2023-05-25 14:32:42 +05:30
The Spline connector support lineage of data source of type `jdbc` or `dbfs` i.e. The spline connector would be able to extract lineage if the data source is either a jdbc connection or the data source is databricks instance.
{% note %}
Currently we do not support data source of type aws s3 or any other cloud storage, which also means that the lineage for external tables from databricks will not be extracted.
{% /note %}
You can refer [this](https://github.com/AbsaOSS/spline-getting-started/tree/main/spline-on-databricks) documentation on how to configure databricks with spline.
### Python Requirements
To run the Spline ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/pipeline/splineConnection.json)
you can find the structure to create a connection to Spline.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Spline:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**hostPort**: Spline REST Server API Host & Port, OpenMetadata uses Spline REST Server APIs to extract the execution details from spline to generate lineage. This should be specified as a URI string in the format `scheme://hostname:port`. E.g., `http://localhost:8080`, `http://host.docker.internal:8080`.
**uiHostPort**: Spline UI Host & Port is an optional field which is used for generating redirection URL from OpenMetadata to Spline Portal. This should be specified as a URI string in the format `scheme://hostname:port`. E.g., `http://localhost:9090`, `http://host.docker.internal:9090`.
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=2 %}
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/pipelineServiceMetadataPipeline.json):
**dbServiceNames**: Database Service Name for the creation of lineage, if the source supports it.
**includeTags**: Set the 'Include Tags' toggle to control whether to include tags as part of metadata ingestion.
**markDeletedPipelines**: Set the Mark Deleted Pipelines toggle to flag pipelines as soft-deleted if they are not present anymore in the source system.
**pipelineFilterPattern** and **chartFilterPattern**: Note that the `pipelineFilterPattern` and `chartFilterPattern` both support regex as include or exclude.
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=3 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
{% partial file="workflow-config.md" /%}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: spline
serviceName: spline_source
serviceConnection:
config:
type: Spline
```
```yaml {% srNumber=1 %}
hostPort: http://localhost:8080
uiHostPort: http://localhost:9090
```
```yaml {% srNumber=2 %}
sourceConfig:
config:
type: PipelineMetadata
# markDeletedPipelines: True
# includeTags: True
# includeLineage: true
# dbServiceNames:
# - local_hive
# pipelineFilterPattern:
# includes:
# - pipeline1
# - pipeline2
# excludes:
# - pipeline3
# - pipeline4
```
```yaml {% srNumber=3 %}
sink:
type: metadata-rest
config: {}
```
{% partial file="workflow-config-yaml.md" /%}
{% /codeBlock %}
{% /codePreview %}
### 2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=5 %}
#### Import necessary modules
The `Workflow` class that is being imported is a part of a metadata ingestion framework, which defines a process of getting data from different sources and ingesting it into a central metadata repository.
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
{% /codeInfo %}
{% codeInfo srNumber=6 %}
**Default arguments for all tasks in the Airflow DAG.**
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
{% /codeInfo %}
{% codeInfo srNumber=7 %}
- **config**: Specifies config for the metadata ingestion as we prepare above.
{% /codeInfo %}
{% codeInfo srNumber=8 %}
- **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `Workflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
{% /codeInfo %}
{% codeInfo srNumber=9 %}
- **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
- For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag).
{% /codeInfo %}
Note that from connector to connector, this recipe will always be the same.
By updating the `YAML configuration`, you will be able to extract metadata from different sources.
{% /codeInfoContainer %}
{% codeBlock fileName="filename.py" %}
```python {% srNumber=5 %}
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
```
```python {% srNumber=6 %}
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
```
```python {% srNumber=7 %}
config = """
<your YAML configuration>
"""
```
```python {% srNumber=8 %}
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
```
```python {% srNumber=9 %}
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
{% /codeBlock %}
{% /codePreview %}