OpenMetadata/ingestion/tests/unit/profiler/pandas/test_profiler_interface.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

278 lines
8.7 KiB
Python
Raw Normal View History

# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Test SQA Interface
"""
import os
from datetime import datetime, timezone
from unittest import TestCase, mock
from uuid import uuid4
from sqlalchemy import TEXT, Column, Integer, String, inspect
from sqlalchemy.orm import declarative_base
from metadata.generated.schema.api.data.createTableProfile import (
CreateTableProfileRequest,
)
from metadata.generated.schema.entity.data.table import Column as EntityColumn
from metadata.generated.schema.entity.data.table import (
ColumnName,
ColumnProfile,
DataType,
Table,
TableProfile,
)
from metadata.generated.schema.entity.services.connections.database.datalakeConnection import (
DatalakeConnection,
)
from metadata.generated.schema.type.basic import Timestamp
from metadata.generated.schema.type.entityReference import EntityReference
from metadata.profiler.api.models import ThreadPoolMetrics
from metadata.profiler.interface.pandas.profiler_interface import (
PandasProfilerInterface,
)
from metadata.profiler.metrics.core import (
ComposedMetric,
MetricTypes,
QueryMetric,
StaticMetric,
)
from metadata.profiler.metrics.static.row_count import RowCount
from metadata.profiler.processor.default import get_default_metrics
class User(declarative_base()):
__tablename__ = "users"
id = Column(Integer, primary_key=True)
name = Column(String(256))
fullname = Column(String(256))
nickname = Column(String(256))
comments = Column(TEXT)
age = Column(Integer)
class FakeConnection:
def client(self):
return None
class PandasInterfaceTest(TestCase):
import pandas as pd
col_names = [
"name",
"fullname",
"nickname",
"comments",
"age",
"dob",
"tob",
"doe",
"json",
"array",
]
root_dir = os.path.dirname(os.path.abspath(__file__))
csv_dir = "../custom_csv"
df1 = pd.read_csv(
os.path.join(root_dir, csv_dir, "test_datalake_metrics_1.csv"), names=col_names
)
df2 = pd.read_csv(
os.path.join(root_dir, csv_dir, "test_datalake_metrics_2.csv"), names=col_names
)
table_entity = Table(
id=uuid4(),
name="user",
databaseSchema=EntityReference(id=uuid4(), type="databaseSchema", name="name"),
fileFormat="csv",
columns=[
EntityColumn(
name=ColumnName("name"),
dataType=DataType.STRING,
),
EntityColumn(
name=ColumnName("fullname"),
dataType=DataType.STRING,
),
EntityColumn(
name=ColumnName("nickname"),
dataType=DataType.STRING,
),
EntityColumn(
name=ColumnName("comments"),
dataType=DataType.STRING,
),
EntityColumn(
name=ColumnName("age"),
dataType=DataType.INT,
),
EntityColumn(
name=ColumnName("dob"),
dataType=DataType.DATETIME,
),
EntityColumn(
name=ColumnName("tob"),
dataType=DataType.DATE,
),
EntityColumn(
name=ColumnName("doe"),
dataType=DataType.DATE,
),
EntityColumn(
name=ColumnName("json"),
dataType=DataType.JSON,
),
EntityColumn(
name=ColumnName("array"),
dataType=DataType.ARRAY,
),
],
)
@classmethod
@mock.patch(
"metadata.profiler.interface.profiler_interface.get_connection",
return_value=FakeConnection,
)
@mock.patch(
"metadata.mixins.pandas.pandas_mixin.fetch_dataframe",
return_value=[df1, pd.concat([df2, pd.DataFrame(index=df1.index)])],
)
def setUp(cls, mock_get_connection, mocked_dfs) -> None:
cls.datalake_profiler_interface = PandasProfilerInterface(
entity=cls.table_entity,
service_connection_config=DatalakeConnection(configSource={}),
storage_config=None,
ometa_client=None,
thread_count=None,
profile_sample_config=None,
source_config=None,
sample_query=None,
table_partition_config=None,
)
@classmethod
def setUpClass(cls) -> None:
"""
Prepare Ingredients
"""
cls.table = User
cls.metrics = get_default_metrics(cls.table)
cls.static_metrics = [
metric for metric in cls.metrics if issubclass(metric, StaticMetric)
]
cls.composed_metrics = [
metric for metric in cls.metrics if issubclass(metric, ComposedMetric)
]
cls.window_metrics = [
metric
for metric in cls.metrics
if issubclass(metric, StaticMetric) and metric.is_window_metric()
]
cls.query_metrics = [
metric
for metric in cls.metrics
if issubclass(metric, QueryMetric) and metric.is_col_metric()
]
def test_get_all_metrics(self):
table_metrics = [
ThreadPoolMetrics(
metrics=[
metric
for metric in self.metrics
if (not metric.is_col_metric() and not metric.is_system_metrics())
],
metric_type=MetricTypes.Table,
column=None,
table=self.table_entity,
)
]
column_metrics = []
query_metrics = []
window_metrics = []
for col in inspect(User).c:
if col.name == "id":
continue
column_metrics.append(
ThreadPoolMetrics(
metrics=[
metric
for metric in self.static_metrics
if metric.is_col_metric() and not metric.is_window_metric()
],
metric_type=MetricTypes.Static,
column=col,
table=self.table_entity,
)
)
for query_metric in self.query_metrics:
query_metrics.append(
ThreadPoolMetrics(
metrics=query_metric,
metric_type=MetricTypes.Query,
column=col,
table=self.table_entity,
)
)
window_metrics.append(
ThreadPoolMetrics(
metrics=[
metric
for metric in self.window_metrics
if metric.is_window_metric()
],
metric_type=MetricTypes.Window,
column=col,
table=self.table_entity,
)
)
all_metrics = [*table_metrics, *column_metrics, *query_metrics, *window_metrics]
profile_results = self.datalake_profiler_interface.get_all_metrics(
all_metrics,
)
column_profile = [
ColumnProfile(**profile_results["columns"].get(col.name))
for col in inspect(User).c
if profile_results["columns"].get(col.name)
]
table_profile = TableProfile(
columnCount=profile_results["table"].get("columnCount"),
rowCount=profile_results["table"].get(RowCount.name()),
timestamp=Timestamp(int(datetime.now(tz=timezone.utc).timestamp())),
)
profile_request = CreateTableProfileRequest(
tableProfile=table_profile, columnProfile=column_profile
)
assert profile_request.tableProfile.columnCount == 10
assert profile_request.tableProfile.rowCount == 6
name_column_profile = [
profile
for profile in profile_request.columnProfile
if profile.name == "name"
][0]
age_column_profile = [
profile
for profile in profile_request.columnProfile
if profile.name == "age"
][0]
assert name_column_profile.nullCount == 2.0
assert age_column_profile.median == 31.0