Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

115 lines
3.2 KiB
Markdown
Raw Normal View History

---
title: Run the ADLS Datalake Connector Externally
slug: /connectors/database/adls-datalake/yaml
---
{% connectorDetailsHeader
name="ADLS Datalake"
stage="PROD"
platform="OpenMetadata"
availableFeatures=["Metadata", "Data Profiler", "Data Quality"]
unavailableFeatures=["Query Usage", "Lineage", "Column-level Lineage", "Owners", "dbt", "Tags", "Stored Procedures"]
/ %}
In this section, we provide guides and references to use the ADLS Datalake connector.
Configure and schedule ADLS Datalake metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [dbt Integration](#dbt-integration)
{% partial file="/v1.6/connectors/external-ingestion-deployment.md" /%}
## Requirements
**Note:** ADLS Datalake connector supports extracting metadata from file types `JSON`, `CSV`, `TSV` & `Parquet`.
### ADLS Permissions
To extract metadata from Azure ADLS (Storage Account - StorageV2), you will need an **App Registration** with the following
permissions on the Storage Account:
- Storage Blob Data Contributor
- Storage Queue Data Contributor
### Python Requirements
{% partial file="/v1.6/connectors/python-requirements.md" /%}
#### Azure installation
```bash
pip3 install "openmetadata-ingestion[datalake-azure]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Datalake.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema.
## 1. Define the YAML Config
### This is a sample config for Datalake using Azure:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=9 %}
- **Client ID** : Client ID of the data storage account
- **Client Secret** : Client Secret of the account
- **Tenant ID** : Tenant ID under which the data storage account falls
- **Account Name** : Account Name of the data Storage
{% /codeInfo %}
{% partial file="/v1.6/connectors/yaml/database/source-config-def.md" /%}
{% partial file="/v1.6/connectors/yaml/ingestion-sink-def.md" /%}
{% partial file="/v1.6/connectors/yaml/workflow-config-def.md" /%}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml {% isCodeBlock=true %}
# Datalake with Azure
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
```
```yaml {% srNumber=9 %}
securityConfig:
clientId: client-id
clientSecret: client-secret
tenantId: tenant-id
accountName: account-name
prefix: prefix
```
{% partial file="/v1.6/connectors/yaml/database/source-config.md" /%}
{% partial file="/v1.6/connectors/yaml/ingestion-sink.md" /%}
{% partial file="/v1.6/connectors/yaml/workflow-config.md" /%}
{% /codeBlock %}
{% /codePreview %}
{% partial file="/v1.6/connectors/yaml/ingestion-cli.md" /%}
## dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage [here](/connectors/ingestion/workflows/dbt).