mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-09-27 09:55:36 +00:00
811 lines
24 KiB
Markdown
811 lines
24 KiB
Markdown
![]() |
---
|
|||
|
title: Run the Athena Connector Externally
|
|||
|
slug: /connectors/database/athena/yaml
|
|||
|
---
|
|||
|
|
|||
|
# Run the Athena Connector Externally
|
|||
|
|
|||
|
{% multiTablesWrapper %}
|
|||
|
|
|||
|
| Feature | Status |
|
|||
|
| :----------------- | :--------------------------- |
|
|||
|
| Stage | PROD |
|
|||
|
| Metadata | {% icon iconName="check" /%} |
|
|||
|
| Query Usage | {% icon iconName="check" /%} |
|
|||
|
| Data Profiler | {% icon iconName="check" /%} |
|
|||
|
| Data Quality | {% icon iconName="check" /%} |
|
|||
|
| Lineage | {% icon iconName="check" /%} |
|
|||
|
| DBT | {% icon iconName="check" /%} |
|
|||
|
| Supported Versions | -- |
|
|||
|
|
|||
|
| Feature | Status |
|
|||
|
| :----------- | :--------------------------- |
|
|||
|
| Lineage | {% icon iconName="check" /%} |
|
|||
|
| Table-level | {% icon iconName="check" /%} |
|
|||
|
| Column-level | {% icon iconName="check" /%} |
|
|||
|
|
|||
|
{% /multiTablesWrapper %}
|
|||
|
|
|||
|
In this section, we provide guides and references to use the Athena connector.
|
|||
|
|
|||
|
Configure and schedule Athena metadata and profiler workflows from the OpenMetadata UI:
|
|||
|
|
|||
|
- [Requirements](#requirements)
|
|||
|
- [Metadata Ingestion](#metadata-ingestion)
|
|||
|
- [Query Usage](#query-usage)
|
|||
|
- [Data Profiler](#data-profiler)
|
|||
|
- [Lineage](#lineage)
|
|||
|
- [dbt Integration](#dbt-integration)
|
|||
|
|
|||
|
{% partial file="/v1.2.0/connectors/external-ingestion-deployment.md" /%}
|
|||
|
|
|||
|
## Requirements
|
|||
|
|
|||
|
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
|
|||
|
To deploy OpenMetadata, check the Deployment guides.
|
|||
|
{%/inlineCallout%}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
The Athena connector ingests metadata through JDBC connections.
|
|||
|
|
|||
|
{% note %}
|
|||
|
|
|||
|
According to AWS's official [documentation](https://docs.aws.amazon.com/athena/latest/ug/policy-actions.html):
|
|||
|
|
|||
|
*If you are using the JDBC or ODBC driver, ensure that the IAM
|
|||
|
permissions policy includes all of the actions listed in [AWS managed policy: AWSQuicksightAthenaAccess](https://docs.aws.amazon.com/athena/latest/ug/managed-policies.html#awsquicksightathenaaccess-managed-policy).*
|
|||
|
|
|||
|
{% /note %}
|
|||
|
|
|||
|
This policy groups the following permissions:
|
|||
|
|
|||
|
- `athena` – Allows the principal to run queries on Athena resources.
|
|||
|
- `glue` – Allows principals access to AWS Glue databases, tables, and partitions. This is required so that the principal can use the AWS Glue Data Catalog with Athena.
|
|||
|
- `s3` – Allows the principal to write and read query results from Amazon S3.
|
|||
|
- `lakeformation` – Allows principals to request temporary credentials to access data in a data lake location that is registered with Lake Formation.
|
|||
|
|
|||
|
And is defined as:
|
|||
|
|
|||
|
```json
|
|||
|
{
|
|||
|
"Version": "2012-10-17",
|
|||
|
"Statement": [
|
|||
|
{
|
|||
|
"Effect": "Allow",
|
|||
|
"Action": [
|
|||
|
"athena:BatchGetQueryExecution",
|
|||
|
"athena:GetQueryExecution",
|
|||
|
"athena:GetQueryResults",
|
|||
|
"athena:GetQueryResultsStream",
|
|||
|
"athena:ListQueryExecutions",
|
|||
|
"athena:StartQueryExecution",
|
|||
|
"athena:StopQueryExecution",
|
|||
|
"athena:ListWorkGroups",
|
|||
|
"athena:ListEngineVersions",
|
|||
|
"athena:GetWorkGroup",
|
|||
|
"athena:GetDataCatalog",
|
|||
|
"athena:GetDatabase",
|
|||
|
"athena:GetTableMetadata",
|
|||
|
"athena:ListDataCatalogs",
|
|||
|
"athena:ListDatabases",
|
|||
|
"athena:ListTableMetadata"
|
|||
|
],
|
|||
|
"Resource": [
|
|||
|
"*"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"Effect": "Allow",
|
|||
|
"Action": [
|
|||
|
"glue:CreateDatabase",
|
|||
|
"glue:DeleteDatabase",
|
|||
|
"glue:GetDatabase",
|
|||
|
"glue:GetDatabases",
|
|||
|
"glue:UpdateDatabase",
|
|||
|
"glue:CreateTable",
|
|||
|
"glue:DeleteTable",
|
|||
|
"glue:BatchDeleteTable",
|
|||
|
"glue:UpdateTable",
|
|||
|
"glue:GetTable",
|
|||
|
"glue:GetTables",
|
|||
|
"glue:BatchCreatePartition",
|
|||
|
"glue:CreatePartition",
|
|||
|
"glue:DeletePartition",
|
|||
|
"glue:BatchDeletePartition",
|
|||
|
"glue:UpdatePartition",
|
|||
|
"glue:GetPartition",
|
|||
|
"glue:GetPartitions",
|
|||
|
"glue:BatchGetPartition"
|
|||
|
],
|
|||
|
"Resource": [
|
|||
|
"*"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"Effect": "Allow",
|
|||
|
"Action": [
|
|||
|
"s3:GetBucketLocation",
|
|||
|
"s3:GetObject",
|
|||
|
"s3:ListBucket",
|
|||
|
"s3:ListBucketMultipartUploads",
|
|||
|
"s3:ListMultipartUploadParts",
|
|||
|
"s3:AbortMultipartUpload",
|
|||
|
"s3:CreateBucket",
|
|||
|
"s3:PutObject",
|
|||
|
"s3:PutBucketPublicAccessBlock"
|
|||
|
],
|
|||
|
"Resource": [
|
|||
|
"arn:aws:s3:::aws-athena-query-results-*"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"Effect": "Allow",
|
|||
|
"Action": [
|
|||
|
"lakeformation:GetDataAccess"
|
|||
|
],
|
|||
|
"Resource": [
|
|||
|
"*"
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
You can find further information on the Athena connector in the [docs](https://docs.open-metadata.org/connectors/database/athena).
|
|||
|
|
|||
|
### Python Requirements
|
|||
|
|
|||
|
To run the Athena ingestion, you will need to install:
|
|||
|
|
|||
|
```bash
|
|||
|
pip3 install "openmetadata-ingestion[athena]"
|
|||
|
```
|
|||
|
|
|||
|
## Metadata Ingestion
|
|||
|
|
|||
|
All connectors are defined as JSON Schemas.
|
|||
|
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/athenaConnection.json)
|
|||
|
you can find the structure to create a connection to Athena.
|
|||
|
|
|||
|
In order to create and run a Metadata Ingestion workflow, we will follow
|
|||
|
the steps to create a YAML configuration able to connect to the source,
|
|||
|
process the Entities if needed, and reach the OpenMetadata server.
|
|||
|
|
|||
|
The workflow is modeled around the following
|
|||
|
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
|
|||
|
|
|||
|
### 1. Define the YAML Config
|
|||
|
|
|||
|
This is a sample config for Athena:
|
|||
|
|
|||
|
{% codePreview %}
|
|||
|
|
|||
|
{% codeInfoContainer %}
|
|||
|
|
|||
|
#### Source Configuration - Service Connection
|
|||
|
|
|||
|
{% codeInfo srNumber=1 %}
|
|||
|
|
|||
|
- **awsAccessKeyId** & **awsSecretAccessKey**: When you interact with AWS, you specify your AWS security credentials to verify who you are and whether you have
|
|||
|
permission to access the resources that you are requesting. AWS uses the security credentials to authenticate and
|
|||
|
authorize your requests ([docs](https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html)).
|
|||
|
|
|||
|
Access keys consist of two parts: An **access key ID** (for example, `AKIAIOSFODNN7EXAMPLE`), and a **secret access key** (for example, `wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY`).
|
|||
|
|
|||
|
You must use both the access key ID and secret access key together to authenticate your requests.
|
|||
|
|
|||
|
You can find further information on how to manage your access keys [here](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html).
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=2 %}
|
|||
|
**awsSessionToken**: If you are using temporary credentials to access your services, you will need to inform the AWS Access Key ID
|
|||
|
and AWS Secrets Access Key. Also, these will include an AWS Session Token.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=3 %}
|
|||
|
|
|||
|
**awsRegion**: Each AWS Region is a separate geographic area in which AWS clusters data centers ([docs](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html)).
|
|||
|
|
|||
|
As AWS can have instances in multiple regions, we need to know the region the service you want reach belongs to.
|
|||
|
|
|||
|
Note that the AWS Region is the only required parameter when configuring a connection. When connecting to the
|
|||
|
services programmatically, there are different ways in which we can extract and use the rest of AWS configurations.
|
|||
|
|
|||
|
You can find further information about configuring your credentials [here](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials).
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=4 %}
|
|||
|
|
|||
|
**endPointURL**: To connect programmatically to an AWS service, you use an endpoint. An *endpoint* is the URL of the
|
|||
|
entry point for an AWS web service. The AWS SDKs and the AWS Command Line Interface (AWS CLI) automatically use the
|
|||
|
default endpoint for each service in an AWS Region. But you can specify an alternate endpoint for your API requests.
|
|||
|
|
|||
|
Find more information on [AWS service endpoints](https://docs.aws.amazon.com/general/latest/gr/rande.html).
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=5 %}
|
|||
|
|
|||
|
**profileName**: A named profile is a collection of settings and credentials that you can apply to a AWS CLI command.
|
|||
|
When you specify a profile to run a command, the settings and credentials are used to run that command.
|
|||
|
Multiple named profiles can be stored in the config and credentials files.
|
|||
|
|
|||
|
You can inform this field if you'd like to use a profile other than `default`.
|
|||
|
|
|||
|
Find here more information about [Named profiles for the AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html).
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=6 %}
|
|||
|
|
|||
|
**assumeRoleArn**: Typically, you use `AssumeRole` within your account or for cross-account access. In this field you'll set the
|
|||
|
`ARN` (Amazon Resource Name) of the policy of the other account.
|
|||
|
|
|||
|
A user who wants to access a role in a different account must also have permissions that are delegated from the account
|
|||
|
administrator. The administrator must attach a policy that allows the user to call `AssumeRole` for the `ARN` of the role in the other account.
|
|||
|
|
|||
|
This is a required field if you'd like to `AssumeRole`.
|
|||
|
|
|||
|
Find more information on [AssumeRole](https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html).
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=7 %}
|
|||
|
|
|||
|
**assumeRoleSessionName**: An identifier for the assumed role session. Use the role session name to uniquely identify a session when the same role
|
|||
|
is assumed by different principals or for different reasons.
|
|||
|
|
|||
|
By default, we'll use the name `OpenMetadataSession`.
|
|||
|
|
|||
|
Find more information about the [Role Session Name](https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html#:~:text=An%20identifier%20for%20the%20assumed%20role%20session.).
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=8 %}
|
|||
|
|
|||
|
**assumeRoleSourceIdentity**: The source identity specified by the principal that is calling the `AssumeRole` operation. You can use source identity
|
|||
|
information in AWS CloudTrail logs to determine who took actions with a role.
|
|||
|
|
|||
|
Find more information about [Source Identity](https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html#:~:text=Required%3A%20No-,SourceIdentity,-The%20source%20identity).
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=9 %}
|
|||
|
|
|||
|
**s3StagingDir**: The S3 staging directory is an optional parameter. Enter a staging directory to override the default staging directory for AWS Athena.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=10 %}
|
|||
|
|
|||
|
**workgroup**: The Athena workgroup is an optional parameter. If you wish to have your Athena connection related to an existing AWS workgroup add your workgroup name here.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
#### Source Configuration - Source Config
|
|||
|
|
|||
|
{% codeInfo srNumber=13 %}
|
|||
|
|
|||
|
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
|
|||
|
|
|||
|
**markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system.
|
|||
|
|
|||
|
**includeTables**: true or false, to ingest table data. Default is true.
|
|||
|
|
|||
|
**includeViews**: true or false, to ingest views definitions.
|
|||
|
|
|||
|
**databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the filter supports regex as include or exclude. You can find examples [here](/connectors/ingestion/workflows/metadata/filter-patterns/database)
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
#### Sink Configuration
|
|||
|
|
|||
|
{% codeInfo srNumber=14 %}
|
|||
|
|
|||
|
|
|||
|
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% partial file="/v1.2.0/connectors/workflow-config.md" /%}
|
|||
|
|
|||
|
#### Advanced Configuration
|
|||
|
|
|||
|
{% codeInfo srNumber=11 %}
|
|||
|
|
|||
|
**Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=12 %}
|
|||
|
|
|||
|
**Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% /codeInfoContainer %}
|
|||
|
|
|||
|
{% codeBlock fileName="filename.yaml" %}
|
|||
|
|
|||
|
```yaml
|
|||
|
source:
|
|||
|
type: athena
|
|||
|
serviceName: local_athena
|
|||
|
serviceConnection:
|
|||
|
config:
|
|||
|
type: Athena
|
|||
|
awsConfig:
|
|||
|
```
|
|||
|
```yaml {% srNumber=1 %}
|
|||
|
awsAccessKeyId: KEY
|
|||
|
awsSecretAccessKey: SECRET
|
|||
|
```
|
|||
|
```yaml {% srNumber=2 %}
|
|||
|
# awsSessionToken: TOKEN
|
|||
|
```
|
|||
|
```yaml {% srNumber=3 %}
|
|||
|
awsRegion: us-east-2
|
|||
|
```
|
|||
|
```yaml {% srNumber=4 %}
|
|||
|
# endPointURL: https://athena.us-east-2.amazonaws.com/custom
|
|||
|
```
|
|||
|
```yaml {% srNumber=5 %}
|
|||
|
# profileName: profile
|
|||
|
```
|
|||
|
```yaml {% srNumber=6 %}
|
|||
|
# assumeRoleArn: "arn:partition:service:region:account:resource"
|
|||
|
```
|
|||
|
```yaml {% srNumber=7 %}
|
|||
|
# assumeRoleSessionName: session
|
|||
|
```
|
|||
|
```yaml {% srNumber=8 %}
|
|||
|
# assumeRoleSourceIdentity: identity
|
|||
|
```
|
|||
|
```yaml {% srNumber=9 %}
|
|||
|
s3StagingDir: s3 directory for datasource
|
|||
|
```
|
|||
|
```yaml {% srNumber=10 %}
|
|||
|
workgroup: workgroup name
|
|||
|
```
|
|||
|
```yaml {% srNumber=11 %}
|
|||
|
# connectionOptions:
|
|||
|
# key: value
|
|||
|
```
|
|||
|
```yaml {% srNumber=12 %}
|
|||
|
# connectionArguments:
|
|||
|
# key: value
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=13 %}
|
|||
|
sourceConfig:
|
|||
|
config:
|
|||
|
type: DatabaseMetadata
|
|||
|
markDeletedTables: true
|
|||
|
includeTables: true
|
|||
|
includeViews: true
|
|||
|
# includeTags: true
|
|||
|
# databaseFilterPattern:
|
|||
|
# includes:
|
|||
|
# - database1
|
|||
|
# - database2
|
|||
|
# excludes:
|
|||
|
# - database3
|
|||
|
# - database4
|
|||
|
# schemaFilterPattern:
|
|||
|
# includes:
|
|||
|
# - schema1
|
|||
|
# - schema2
|
|||
|
# excludes:
|
|||
|
# - schema3
|
|||
|
# - schema4
|
|||
|
# tableFilterPattern:
|
|||
|
# includes:
|
|||
|
# - users
|
|||
|
# - type_test
|
|||
|
# excludes:
|
|||
|
# - table3
|
|||
|
# - table4
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=14 %}
|
|||
|
sink:
|
|||
|
type: metadata-rest
|
|||
|
config: {}
|
|||
|
```
|
|||
|
|
|||
|
{% partial file="/v1.2.0/connectors/workflow-config-yaml.md" /%}
|
|||
|
|
|||
|
{% /codeBlock %}
|
|||
|
|
|||
|
{% /codePreview %}
|
|||
|
|
|||
|
### 2. Run with the CLI
|
|||
|
|
|||
|
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
|
|||
|
|
|||
|
```bash
|
|||
|
metadata ingest -c <path-to-yaml>
|
|||
|
```
|
|||
|
|
|||
|
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
|
|||
|
you will be able to extract metadata from different sources.
|
|||
|
|
|||
|
## Query Usage
|
|||
|
|
|||
|
The Query Usage workflow will be using the `query-parser` processor.
|
|||
|
|
|||
|
After running a Metadata Ingestion workflow, we can run Query Usage workflow.
|
|||
|
While the `serviceName` will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the `serviceConnection` details from the server.
|
|||
|
|
|||
|
|
|||
|
### 1. Define the YAML Config
|
|||
|
|
|||
|
This is a sample config for BigQuery Usage:
|
|||
|
|
|||
|
{% codePreview %}
|
|||
|
|
|||
|
{% codeInfoContainer %}
|
|||
|
|
|||
|
{% codeInfo srNumber=25 %}
|
|||
|
|
|||
|
#### Source Configuration - Source Config
|
|||
|
|
|||
|
You can find all the definitions and types for the `sourceConfig` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceQueryUsagePipeline.json).
|
|||
|
|
|||
|
**queryLogDuration**: Configuration to tune how far we want to look back in query logs to process usage data.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=26 %}
|
|||
|
|
|||
|
**stageFileLocation**: Temporary file name to store the query logs before processing. Absolute file path required.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=27 %}
|
|||
|
|
|||
|
**resultLimit**: Configuration to set the limit for query logs
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=28 %}
|
|||
|
|
|||
|
**queryLogFilePath**: Configuration to set the file path for query logs
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
|
|||
|
{% codeInfo srNumber=29 %}
|
|||
|
|
|||
|
#### Processor, Stage and Bulk Sink Configuration
|
|||
|
|
|||
|
To specify where the staging files will be located.
|
|||
|
|
|||
|
Note that the location is a directory that will be cleaned at the end of the ingestion.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=30 %}
|
|||
|
|
|||
|
#### Workflow Configuration
|
|||
|
|
|||
|
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
|
|||
|
|
|||
|
For a simple, local installation using our docker containers, this looks like:
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% /codeInfoContainer %}
|
|||
|
|
|||
|
{% codeBlock fileName="filename.yaml" %}
|
|||
|
|
|||
|
```yaml
|
|||
|
source:
|
|||
|
type: athena-usage
|
|||
|
serviceName: <service name>
|
|||
|
sourceConfig:
|
|||
|
config:
|
|||
|
type: DatabaseUsage
|
|||
|
```
|
|||
|
```yaml {% srNumber=25 %}
|
|||
|
# Number of days to look back
|
|||
|
queryLogDuration: 7
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=26 %}
|
|||
|
# This is a directory that will be DELETED after the usage runs
|
|||
|
stageFileLocation: <path to store the stage file>
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=27 %}
|
|||
|
# resultLimit: 1000
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=28 %}
|
|||
|
# If instead of getting the query logs from the database we want to pass a file with the queries
|
|||
|
# queryLogFilePath: path-to-file
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=29 %}
|
|||
|
processor:
|
|||
|
type: query-parser
|
|||
|
config: {}
|
|||
|
stage:
|
|||
|
type: table-usage
|
|||
|
config:
|
|||
|
filename: /tmp/athena_usage
|
|||
|
bulkSink:
|
|||
|
type: metadata-usage
|
|||
|
config:
|
|||
|
filename: /tmp/athena_usage
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=30 %}
|
|||
|
workflowConfig:
|
|||
|
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
|
|||
|
openMetadataServerConfig:
|
|||
|
hostPort: <OpenMetadata host and port>
|
|||
|
authProvider: <OpenMetadata auth provider>
|
|||
|
```
|
|||
|
|
|||
|
{% /codeBlock %}
|
|||
|
{% /codePreview %}
|
|||
|
|
|||
|
### 2. Run with the CLI
|
|||
|
|
|||
|
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
|
|||
|
|
|||
|
```bash
|
|||
|
metadata ingest -c <path-to-yaml>
|
|||
|
```
|
|||
|
|
|||
|
## Data Profiler
|
|||
|
|
|||
|
The Data Profiler workflow will be using the `orm-profiler` processor.
|
|||
|
|
|||
|
After running a Metadata Ingestion workflow, we can run Data Profiler workflow.
|
|||
|
While the `serviceName` will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the `serviceConnection` details from the server.
|
|||
|
|
|||
|
|
|||
|
### 1. Define the YAML Config
|
|||
|
|
|||
|
This is a sample config for the profiler:
|
|||
|
|
|||
|
{% codePreview %}
|
|||
|
|
|||
|
{% codeInfoContainer %}
|
|||
|
|
|||
|
{% codeInfo srNumber=13 %}
|
|||
|
#### Source Configuration - Source Config
|
|||
|
|
|||
|
You can find all the definitions and types for the `sourceConfig` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
|
|||
|
|
|||
|
**generateSampleData**: Option to turn on/off generating sample data.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=14 %}
|
|||
|
|
|||
|
**profileSample**: Percentage of data or no. of rows we want to execute the profiler and tests on.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=15 %}
|
|||
|
|
|||
|
**threadCount**: Number of threads to use during metric computations.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=16 %}
|
|||
|
|
|||
|
**processPiiSensitive**: Optional configuration to automatically tag columns that might contain sensitive information.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=17 %}
|
|||
|
|
|||
|
**confidence**: Set the Confidence value for which you want the column to be marked
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
|
|||
|
{% codeInfo srNumber=18 %}
|
|||
|
|
|||
|
**timeoutSeconds**: Profiler Timeout in Seconds
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=19 %}
|
|||
|
|
|||
|
**databaseFilterPattern**: Regex to only fetch databases that matches the pattern.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=20 %}
|
|||
|
|
|||
|
**schemaFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=21 %}
|
|||
|
|
|||
|
**tableFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% codeInfo srNumber=22 %}
|
|||
|
|
|||
|
#### Processor Configuration
|
|||
|
|
|||
|
Choose the `orm-profiler`. Its config can also be updated to define tests from the YAML itself instead of the UI:
|
|||
|
|
|||
|
**tableConfig**: `tableConfig` allows you to set up some configuration at the table level.
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
|
|||
|
{% codeInfo srNumber=23 %}
|
|||
|
|
|||
|
#### Sink Configuration
|
|||
|
|
|||
|
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
|
|||
|
{% codeInfo srNumber=24 %}
|
|||
|
|
|||
|
#### Workflow Configuration
|
|||
|
|
|||
|
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
|
|||
|
|
|||
|
For a simple, local installation using our docker containers, this looks like:
|
|||
|
|
|||
|
{% /codeInfo %}
|
|||
|
|
|||
|
{% /codeInfoContainer %}
|
|||
|
|
|||
|
{% codeBlock fileName="filename.yaml" %}
|
|||
|
|
|||
|
|
|||
|
```yaml
|
|||
|
source:
|
|||
|
type: athena
|
|||
|
serviceName: local_athena
|
|||
|
sourceConfig:
|
|||
|
config:
|
|||
|
type: Profiler
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=13 %}
|
|||
|
generateSampleData: true
|
|||
|
```
|
|||
|
```yaml {% srNumber=14 %}
|
|||
|
# profileSample: 85
|
|||
|
```
|
|||
|
```yaml {% srNumber=15 %}
|
|||
|
# threadCount: 5
|
|||
|
```
|
|||
|
```yaml {% srNumber=16 %}
|
|||
|
processPiiSensitive: false
|
|||
|
```
|
|||
|
```yaml {% srNumber=17 %}
|
|||
|
# confidence: 80
|
|||
|
```
|
|||
|
```yaml {% srNumber=18 %}
|
|||
|
# timeoutSeconds: 43200
|
|||
|
```
|
|||
|
```yaml {% srNumber=19 %}
|
|||
|
# databaseFilterPattern:
|
|||
|
# includes:
|
|||
|
# - database1
|
|||
|
# - database2
|
|||
|
# excludes:
|
|||
|
# - database3
|
|||
|
# - database4
|
|||
|
```
|
|||
|
```yaml {% srNumber=20 %}
|
|||
|
# schemaFilterPattern:
|
|||
|
# includes:
|
|||
|
# - schema1
|
|||
|
# - schema2
|
|||
|
# excludes:
|
|||
|
# - schema3
|
|||
|
# - schema4
|
|||
|
```
|
|||
|
```yaml {% srNumber=21 %}
|
|||
|
# tableFilterPattern:
|
|||
|
# includes:
|
|||
|
# - table1
|
|||
|
# - table2
|
|||
|
# excludes:
|
|||
|
# - table3
|
|||
|
# - table4
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=22 %}
|
|||
|
processor:
|
|||
|
type: orm-profiler
|
|||
|
config: {} # Remove braces if adding properties
|
|||
|
# tableConfig:
|
|||
|
# - fullyQualifiedName: <table fqn>
|
|||
|
# profileSample: <number between 0 and 99> # default
|
|||
|
|
|||
|
# profileSample: <number between 0 and 99> # default will be 100 if omitted
|
|||
|
# profileQuery: <query to use for sampling data for the profiler>
|
|||
|
# columnConfig:
|
|||
|
# excludeColumns:
|
|||
|
# - <column name>
|
|||
|
# includeColumns:
|
|||
|
# - columnName: <column name>
|
|||
|
# - metrics:
|
|||
|
# - MEAN
|
|||
|
# - MEDIAN
|
|||
|
# - ...
|
|||
|
# partitionConfig:
|
|||
|
# enablePartitioning: <set to true to use partitioning>
|
|||
|
# partitionColumnName: <partition column name. Must be a timestamp or datetime/date field type>
|
|||
|
# partitionInterval: <partition interval>
|
|||
|
# partitionIntervalUnit: <YEAR, MONTH, DAY, HOUR>
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=23 %}
|
|||
|
sink:
|
|||
|
type: metadata-rest
|
|||
|
config: {}
|
|||
|
```
|
|||
|
|
|||
|
```yaml {% srNumber=24 %}
|
|||
|
workflowConfig:
|
|||
|
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
|
|||
|
openMetadataServerConfig:
|
|||
|
hostPort: <OpenMetadata host and port>
|
|||
|
authProvider: <OpenMetadata auth provider>
|
|||
|
```
|
|||
|
|
|||
|
{% /codeBlock %}
|
|||
|
|
|||
|
{% /codePreview %}
|
|||
|
|
|||
|
- You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from [here](/connectors/ingestion/workflows/profiler)
|
|||
|
|
|||
|
### 2. Run with the CLI
|
|||
|
|
|||
|
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
|
|||
|
|
|||
|
```bash
|
|||
|
metadata profile -c <path-to-yaml>
|
|||
|
```
|
|||
|
|
|||
|
Note now instead of running `ingest`, we are using the `profile` command to select the Profiler workflow.
|
|||
|
|
|||
|
## Lineage
|
|||
|
|
|||
|
You can learn more about how to ingest lineage [here](/connectors/ingestion/workflows/lineage).
|
|||
|
|
|||
|
## dbt Integration
|
|||
|
|
|||
|
{% tilesContainer %}
|
|||
|
|
|||
|
{% tile
|
|||
|
icon="mediation"
|
|||
|
title="dbt Integration"
|
|||
|
description="Learn more about how to ingest dbt models' definitions and their lineage."
|
|||
|
link="/connectors/ingestion/workflows/dbt" /%}
|
|||
|
|
|||
|
{% /tilesContainer %}
|
|||
|
|
|||
|
## Related
|
|||
|
|
|||
|
{% tilesContainer %}
|
|||
|
|
|||
|
{% tile
|
|||
|
title="Ingest with Airflow"
|
|||
|
description="Configure the ingestion using Airflow SDK"
|
|||
|
link="/connectors/database/athena/airflow"
|
|||
|
/ %}
|
|||
|
|
|||
|
{% /tilesContainer %}
|