mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-09-26 17:34:41 +00:00
187 lines
5.7 KiB
Markdown
187 lines
5.7 KiB
Markdown
![]() |
---
|
||
|
title: Run the Databricks Connector Externally
|
||
|
slug: /connectors/database/databricks/yaml
|
||
|
---
|
||
|
|
||
|
{% connectorDetailsHeader
|
||
|
name="Databricks"
|
||
|
stage="PROD"
|
||
|
platform="OpenMetadata"
|
||
|
availableFeatures=["Metadata", "Query Usage", "Lineage", "Column-level Lineage", "Data Profiler", "Data Quality", "dbt", "Tags"]
|
||
|
unavailableFeatures=["Owners", "Stored Procedures"]
|
||
|
/ %}
|
||
|
|
||
|
{% note %}
|
||
|
As per the [documentation](https://docs.databricks.com/en/data-governance/unity-catalog/tags.html#manage-tags-with-sql-commands) here, note that we only support metadata `tag` extraction for databricks version 13.3 version and higher.
|
||
|
{% /note %}
|
||
|
|
||
|
In this section, we provide guides and references to use the Databricks connector.
|
||
|
|
||
|
Configure and schedule Databricks metadata and profiler workflows from the OpenMetadata UI:
|
||
|
|
||
|
- [Requirements](#requirements)
|
||
|
- [Metadata Ingestion](#metadata-ingestion)
|
||
|
- [Query Usage](#query-usage)
|
||
|
- [Lineage](#lineage)
|
||
|
- [Data Profiler](#data-profiler)
|
||
|
- [Data Quality](#data-quality)
|
||
|
- [dbt Integration](#dbt-integration)
|
||
|
|
||
|
{% partial file="/v1.4/connectors/external-ingestion-deployment.md" /%}
|
||
|
|
||
|
## Requirements
|
||
|
|
||
|
### Python Requirements
|
||
|
|
||
|
To run the Databricks ingestion, you will need to install:
|
||
|
|
||
|
```bash
|
||
|
pip3 install "openmetadata-ingestion[databricks]"
|
||
|
```
|
||
|
|
||
|
## Metadata Ingestion
|
||
|
|
||
|
All connectors are defined as JSON Schemas.
|
||
|
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/databricksConnection.json)
|
||
|
you can find the structure to create a connection to Databricks.
|
||
|
|
||
|
In order to create and run a Metadata Ingestion workflow, we will follow
|
||
|
the steps to create a YAML configuration able to connect to the source,
|
||
|
process the Entities if needed, and reach the OpenMetadata server.
|
||
|
|
||
|
The workflow is modeled around the following
|
||
|
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
|
||
|
|
||
|
### 1. Define the YAML Config
|
||
|
|
||
|
This is a sample config for Databricks:
|
||
|
|
||
|
{% codePreview %}
|
||
|
|
||
|
{% codeInfoContainer %}
|
||
|
|
||
|
#### Source Configuration - Service Connection
|
||
|
|
||
|
{% codeInfo srNumber=1 %}
|
||
|
|
||
|
**catalog**: Catalog of the data source(Example: hive_metastore). This is optional parameter, if you would like to restrict the metadata reading to a single catalog. When left blank, OpenMetadata Ingestion attempts to scan all the catalog.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=2 %}
|
||
|
|
||
|
**databaseSchema**: DatabaseSchema of the data source. This is optional parameter, if you would like to restrict the metadata reading to a single databaseSchema. When left blank, OpenMetadata Ingestion attempts to scan all the databaseSchema.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=3 %}
|
||
|
|
||
|
**hostPort**: Enter the fully qualified hostname and port number for your Databricks deployment in the Host and Port field.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=4 %}
|
||
|
|
||
|
**token**: Generated Token to connect to Databricks.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=5 %}
|
||
|
|
||
|
**httpPath**: Databricks compute resources URL.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=6 %}
|
||
|
|
||
|
**connectionTimeout**: The maximum amount of time (in seconds) to wait for a successful connection to the data source. If the connection attempt takes longer than this timeout period, an error will be returned.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/database/source-config-def.md" /%}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/ingestion-sink-def.md" /%}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/workflow-config-def.md" /%}
|
||
|
|
||
|
#### Advanced Configuration
|
||
|
|
||
|
{% codeInfo srNumber=7 %}
|
||
|
|
||
|
**Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% codeInfo srNumber=8 %}
|
||
|
|
||
|
**Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
|
||
|
|
||
|
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
|
||
|
|
||
|
{% /codeInfo %}
|
||
|
|
||
|
{% /codeInfoContainer %}
|
||
|
|
||
|
{% codeBlock fileName="filename.yaml" %}
|
||
|
|
||
|
```yaml
|
||
|
source:
|
||
|
type: databricks
|
||
|
serviceName: local_databricks
|
||
|
serviceConnection:
|
||
|
config:
|
||
|
type: Databricks
|
||
|
```
|
||
|
```yaml {% srNumber=1 %}
|
||
|
catalog: hive_metastore
|
||
|
```
|
||
|
```yaml {% srNumber=2 %}
|
||
|
databaseSchema: default
|
||
|
```
|
||
|
```yaml {% srNumber=3 %}
|
||
|
token: <databricks token>
|
||
|
```
|
||
|
```yaml {% srNumber=4 %}
|
||
|
hostPort: <databricks connection host & port>
|
||
|
```
|
||
|
```yaml {% srNumber=5 %}
|
||
|
httpPath: <http path of databricks cluster>
|
||
|
```
|
||
|
```yaml {% srNumber=6 %}
|
||
|
connectionTimeout: 120
|
||
|
```
|
||
|
```yaml {% srNumber=7 %}
|
||
|
# connectionOptions:
|
||
|
# key: value
|
||
|
```
|
||
|
```yaml {% srNumber=8 %}
|
||
|
# connectionArguments:
|
||
|
# key: value
|
||
|
```
|
||
|
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/database/source-config.md" /%}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/ingestion-sink.md" /%}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/workflow-config.md" /%}
|
||
|
|
||
|
{% /codeBlock %}
|
||
|
|
||
|
{% /codePreview %}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/ingestion-cli.md" /%}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/query-usage.md" variables={connector: "databricks"} /%}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/lineage.md" variables={connector: "databricks"} /%}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/data-profiler.md" variables={connector: "databricks"} /%}
|
||
|
|
||
|
{% partial file="/v1.4/connectors/yaml/data-quality.md" /%}
|
||
|
|
||
|
## dbt Integration
|
||
|
|
||
|
You can learn more about how to ingest dbt models' definitions and their lineage [here](/connectors/ingestion/workflows/dbt).
|