2022-06-27 15:14:04 +02:00
---
title: Run DeltaLake Connector using the CLI
2022-10-05 21:54:02 -07:00
slug: /connectors/database/deltalake/cli
2022-06-27 15:14:04 +02:00
---
2022-08-27 02:57:09 +02:00
# Run Deltalake using the metadata CLI
2023-01-31 20:47:40 +05:30
< Table >
2023-01-31 21:26:26 +05:30
2023-01-31 20:47:40 +05:30
| Stage | Metadata |Query Usage | Data Profiler | Data Quality | Lineage | DBT | Supported Versions |
|:------:|:------:|:-----------:|:-------------:|:------------:|:-------:|:---:|:------------------:|
2023-01-31 21:26:26 +05:30
| PROD | ✅ | ❌ | ❌ | ❌ | Partially via Views | ❌ | -- |
2023-01-31 20:47:40 +05:30
< / Table >
2023-01-31 21:26:26 +05:30
2023-01-31 20:47:40 +05:30
< Table >
2023-01-31 21:26:26 +05:30
2023-01-31 20:47:40 +05:30
| Lineage | Table-level | Column-level |
|:------:|:-----------:|:-------------:|
| Partially via Views | ✅ | ✅ |
2023-01-31 21:26:26 +05:30
2023-01-31 20:47:40 +05:30
< / Table >
2022-06-27 15:14:04 +02:00
2022-08-27 02:57:09 +02:00
In this section, we provide guides and references to use the Deltalake connector.
2022-06-27 15:14:04 +02:00
2022-08-27 02:57:09 +02:00
Configure and schedule Deltalake metadata and profiler workflows from the OpenMetadata UI:
- [Requirements ](#requirements )
- [Metadata Ingestion ](#metadata-ingestion )
2022-12-22 18:41:18 +05:30
- [dbt Integration ](#dbt-integration )
2022-08-18 11:43:45 +02:00
2022-08-27 02:57:09 +02:00
## Requirements
2022-06-27 15:14:04 +02:00
2022-09-20 16:47:57 +02:00
< InlineCallout color = "violet-70" icon = "description" bold = "OpenMetadata 0.12.1 or later" href = "/deployment" >
2022-08-27 02:57:09 +02:00
To deploy OpenMetadata, check the < a href = "/deployment" > Deployment< / a > guides.
< / InlineCallout >
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Deltalake ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[deltalake]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
2022-09-28 14:05:51 -07:00
[Here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/deltaLakeConnection.json )
2022-08-27 02:57:09 +02:00
you can find the structure to create a connection to Deltalake.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
2022-09-23 15:09:46 -07:00
[JSON Schema ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json )
2022-08-27 02:57:09 +02:00
### 1. Define the YAML Config
This is a sample config for Deltalake:
```yaml
source:
type: deltalake
serviceName: "< service name > "
serviceConnection:
config:
type: DeltaLake
2022-09-20 16:47:57 +02:00
metastoreConnection:
# Pick only of the three
metastoreHostPort: "< metastore host port > "
# metastoreDb: jdbc:mysql://localhost:3306/demo_hive
# metastoreFilePath: "< path_to_metastore > /metastore_db"
2022-08-27 02:57:09 +02:00
appName: MyApp
sourceConfig:
config:
2023-01-27 15:30:48 +01:00
type: DatabaseMetadata
2022-08-27 02:57:09 +02:00
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
sink:
type: metadata-rest
config: {}
workflowConfig:
2022-08-31 15:11:11 +02:00
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
2022-08-27 02:57:09 +02:00
openMetadataServerConfig:
hostPort: "< OpenMetadata host and port > "
authProvider: "< OpenMetadata auth provider > "
```
#### Source Configuration - Service Connection
2022-06-27 15:14:04 +02:00
2022-09-20 16:47:57 +02:00
- **Metastore Host Port**: Enter the Host & Port of Hive Metastore Service to configure the Spark Session. Either
of `metastoreHostPort` , `metastoreDb` or `metastoreFilePath` is required.
2022-07-24 18:49:15 +02:00
- **Metastore File Path**: Enter the file path to local Metastore in case Spark cluster is running locally. Either
2022-09-20 16:47:57 +02:00
of `metastoreHostPort` , `metastoreDb` or `metastoreFilePath` is required.
- **Metastore DB**: The JDBC connection to the underlying Hive metastore DB. Either
of `metastoreHostPort` , `metastoreDb` or `metastoreFilePath` is required.
2022-06-27 15:14:04 +02:00
- **appName (Optional)**: Enter the app name of spark session.
2022-07-24 18:49:15 +02:00
- **Connection Arguments (Optional)**: Key-Value pairs that will be used to pass extra `config` elements to the Spark
Session builder.
We are internally running with `pyspark` 3.X and `delta-lake` 2.0.0. This means that we need to consider Spark
configuration options for 3.X.
2022-08-31 15:11:11 +02:00
##### Metastore Host Port
When connecting to an External Metastore passing the parameter `Metastore Host Port` , we will be preparing a Spark Session with the configuration
```
.config("hive.metastore.uris", "thrift://{connection.metastoreHostPort}")
```
Then, we will be using the `catalog` functions from the Spark Session to pick up the metadata exposed by the Hive Metastore.
##### Metastore File Path
If instead we use a local file path that contains the metastore information (e.g., for local testing with the default `metastore_db` directory), we will set
```
.config("spark.driver.extraJavaOptions", "-Dderby.system.home={connection.metastoreFilePath}")
```
To update the `Derby` information. More information about this in a great [SO thread ](https://stackoverflow.com/questions/38377188/how-to-get-rid-of-derby-log-metastore-db-from-spark-shell ).
2022-07-24 18:49:15 +02:00
- You can find all supported configurations [here ](https://spark.apache.org/docs/latest/configuration.html )
- If you need further information regarding the Hive metastore, you can find
it [here ](https://spark.apache.org/docs/3.0.0-preview/sql-data-sources-hive-tables.html ), and in The Internals of
Spark SQL [book ](https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql-hive-metastore.html ).
2022-06-27 15:14:04 +02:00
2022-08-27 02:57:09 +02:00
#### Source Configuration - Source Config
2022-09-23 15:09:46 -07:00
The `sourceConfig` is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json ):
2022-08-27 02:57:09 +02:00
- `markDeletedTables` : To flag tables as soft-deleted if they are not present anymore in the source system.
- `includeTables` : true or false, to ingest table data. Default is true.
- `includeViews` : true or false, to ingest views definitions.
- `databaseFilterPattern` , `schemaFilterPattern` , `tableFilternPattern` : Note that the they support regex as include or exclude. E.g.,
```yaml
tableFilterPattern:
includes:
- users
- type_test
```
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest` .
#### Workflow Configuration
The main property here is the `openMetadataServerConfig` , where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
openMetadataServerConfig:
2022-10-03 14:52:32 +05:30
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
2022-08-27 02:57:09 +02:00
```
2022-09-23 15:09:46 -07:00
We support different security providers. You can find their definitions [here ](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client ).
2022-08-27 02:57:09 +02:00
You can find the different implementation of the ingestion below.
< Collapse title = "Configure SSO in the Ingestion Workflows" >
2022-10-03 14:52:32 +05:30
### Openmetadata JWT Auth
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
2022-08-27 02:57:09 +02:00
### Auth0 SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens ](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens )
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
< / Collapse >
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c < path-to-yaml >
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.
2022-12-22 18:41:18 +05:30
## dbt Integration
2022-08-27 02:57:09 +02:00
2022-12-22 18:41:18 +05:30
You can learn more about how to ingest dbt models' definitions and their lineage [here ](/connectors/ingestion/workflows/dbt ).