2023-04-25 16:58:47 +02:00
---
2023-08-27 10:55:55 +02:00
title: Run the Mlflow Connector Externally
slug: /connectors/ml-model/mlflow/yaml
2023-04-25 16:58:47 +02:00
---
2023-08-27 10:55:55 +02:00
# Run the Mlflow Connector Externally
2023-04-25 16:58:47 +02:00
In this section, we provide guides and references to use the Mlflow connector.
Configure and schedule Mlflow metadata and profiler workflows from the OpenMetadata UI:
- [Requirements ](#requirements )
- [Metadata Ingestion ](#metadata-ingestion )
2023-09-12 12:22:40 +02:00
{% partial file="/v1.1/connectors/external-ingestion-deployment.md" /%}
2023-08-27 10:55:55 +02:00
2023-04-25 16:58:47 +02:00
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
2023-08-27 10:55:55 +02:00
2023-04-25 16:58:47 +02:00
### Python Requirements
To run the Mlflow ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[mlflow]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/mlmodel/mlflowConnection.json )
you can find the structure to create a connection to Mlflow.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema ](https://github.com/open-metadata/OpenMetadatablob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json )
### 1. Define the YAML Config
This is a sample config for Mlflow:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**trackingUri**: Mlflow Experiment tracking URI. E.g., http://localhost:5000
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**registryUri**: Mlflow Model registry backend. E.g., mysql+pymysql://mlflow:password@localhost:3307/experiments
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=3 %}
The sourceConfig is defined [here ](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/messagingServiceMetadataPipeline.json ):
**markDeletedMlModels**: Set the Mark Deleted Ml Models toggle to flag ml models as soft-deleted if they are not present anymore in the source system.
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=4 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest` .
{% /codeInfo %}
2023-09-12 12:22:40 +02:00
{% partial file="/v1.1/connectors/workflow-config.md" /%}
2023-04-25 16:58:47 +02:00
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: mlflow
serviceName: local_mlflow
serviceConnection:
config:
type: Mlflow
```
```yaml {% srNumber=1 %}
trackingUri: http://localhost:5000
```
```yaml {% srNumber=2 %}
registryUri: mysql+pymysql://mlflow:password@localhost:3307/experiments
```
```yaml {% srNumber=3 %}
sourceConfig:
config:
type: MlModelMetadata
# markDeletedMlModels: true
```
```yaml {% srNumber=4 %}
sink:
type: metadata-rest
config: {}
```
2023-09-12 12:22:40 +02:00
{% partial file="/v1.1/connectors/workflow-config-yaml.md" /%}
2023-04-25 16:58:47 +02:00
{% /codeBlock %}
{% /codePreview %}
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c < path-to-yaml >
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.