202 lines
5.4 KiB
Markdown
Raw Normal View History

---
title: Run Kafka Connector using the CLI
slug: /connectors/messaging/kafka/cli
---
# Run Kafka using the metadata CLI
In this section, we provide guides and references to use the Kafka connector.
Configure and schedule Kafka metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Kafka ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[kafka]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/messaging/kafkaConnection.json)
you can find the structure to create a connection to Kafka.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Kafka:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**bootstrapServers**: Kafka bootstrap servers.
Add them in comma separated values ex: host1:9092,host2:9092.
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**schemaRegistryURL**: Confluent Kafka Schema Registry URL. URI format.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**consumerConfig**: Confluent Kafka Consumer Config.
{% /codeInfo %}
{% codeInfo srNumber=4 %}
**schemaRegistryConfig**:Confluent Kafka Schema Registry Config.
**Note:** To ingest the topic schema `schemaRegistryURL` must be passed
{% /codeInfo %}
#### Source Configuration - Source Config
{% codeInfo srNumber=5 %}
The sourceConfig is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/messagingServiceMetadataPipeline.json):
**generateSampleData:** Option to turn on/off generating sample data during metadata extraction.
**topicFilterPattern:** Note that the `topicFilterPattern` supports regex as include or exclude.
{% /codeInfo %}
#### Sink Configuration
{% codeInfo srNumber=6 %}
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
#### Workflow Configuration
{% codeInfo srNumber=7 %}
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: kafka
serviceName: local_kafka
serviceConnection:
config:
type: Kafka
```
```yaml {% srNumber=1 %}
bootstrapServers: localhost:9092
```
```yaml {% srNumber=2 %}
schemaRegistryURL: http://localhost:8081 # Needs to be a URI
```
```yaml {% srNumber=3 %}
consumerConfig: {}
```
```yaml {% srNumber=4 %}
schemaRegistryConfig: {}
```
```yaml {% srNumber=5 %}
sourceConfig:
config:
type: MessagingMetadata
topicFilterPattern:
excludes:
- _confluent.*
# includes:
# - topic1
# generateSampleData: true
```
```yaml {% srNumber=6 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=7 %}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
{% /codeBlock %}
{% /codePreview %}
### Workflow Configs for Security Provider
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
## Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens).
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
```
- You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth).
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.