mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-07-14 04:29:21 +00:00
106 lines
3.2 KiB
Python
106 lines
3.2 KiB
Python
![]() |
# Copyright 2021 Collate
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
Metadata DAG common functions
|
||
|
"""
|
||
|
import json
|
||
|
from datetime import datetime
|
||
|
from typing import Any, Dict
|
||
|
|
||
|
from airflow import DAG
|
||
|
|
||
|
from metadata.generated.schema.type import basic
|
||
|
|
||
|
try:
|
||
|
from airflow.operators.python import PythonOperator
|
||
|
except ModuleNotFoundError:
|
||
|
from airflow.operators.python_operator import PythonOperator
|
||
|
|
||
|
from airflow_provider_openmetadata.lineage.callback import (
|
||
|
failure_callback,
|
||
|
success_callback,
|
||
|
)
|
||
|
from metadata.generated.schema.entity.services.ingestionPipelines.ingestionPipeline import (
|
||
|
IngestionPipeline,
|
||
|
)
|
||
|
from metadata.generated.schema.metadataIngestion.workflow import (
|
||
|
OpenMetadataWorkflowConfig,
|
||
|
)
|
||
|
from metadata.ingestion.api.workflow import Workflow
|
||
|
|
||
|
|
||
|
def metadata_ingestion_workflow(workflow_config: OpenMetadataWorkflowConfig):
|
||
|
"""
|
||
|
Task that creates and runs the ingestion workflow.
|
||
|
|
||
|
The workflow_config gets cooked form the incoming
|
||
|
airflow_pipeline.
|
||
|
|
||
|
This is the callable used to create the PythonOperator
|
||
|
"""
|
||
|
config = json.loads(workflow_config.json())
|
||
|
|
||
|
workflow = Workflow.create(config)
|
||
|
workflow.execute()
|
||
|
workflow.raise_from_status()
|
||
|
workflow.print_status()
|
||
|
workflow.stop()
|
||
|
|
||
|
|
||
|
def get_start_date(ingestion_pipeline: IngestionPipeline) -> datetime:
|
||
|
"""
|
||
|
Prepare the DAG start_date based on the incoming
|
||
|
airflowPipeline payload from the OM server
|
||
|
"""
|
||
|
basic_date: basic.Date = ingestion_pipeline.airflowConfig.startDate
|
||
|
|
||
|
return datetime.strptime(str(basic_date.__root__), "%Y-%m-%d")
|
||
|
|
||
|
|
||
|
def build_default_args() -> Dict[str, Any]:
|
||
|
"""
|
||
|
Build the default_args dict to be passed
|
||
|
to the DAG regardless of the airflow_pipeline
|
||
|
payload.
|
||
|
"""
|
||
|
return {
|
||
|
# Run the lineage backend callbacks to gather the Pipeline info
|
||
|
"on_failure_callback": failure_callback,
|
||
|
"on_success_callback": success_callback,
|
||
|
}
|
||
|
|
||
|
|
||
|
def build_ingestion_dag(
|
||
|
task_name: str,
|
||
|
ingestion_pipeline: IngestionPipeline,
|
||
|
workflow_config: Dict[str, Any],
|
||
|
) -> DAG:
|
||
|
"""
|
||
|
Build a simple metadata workflow DAG
|
||
|
"""
|
||
|
|
||
|
with DAG(
|
||
|
dag_id=ingestion_pipeline.name.__root__,
|
||
|
default_args=build_default_args(),
|
||
|
description=ingestion_pipeline.description,
|
||
|
start_date=get_start_date(ingestion_pipeline),
|
||
|
is_paused_upon_creation=ingestion_pipeline.airflowConfig.pausePipeline or False,
|
||
|
catchup=ingestion_pipeline.airflowConfig.pipelineCatchup or False,
|
||
|
) as dag:
|
||
|
|
||
|
PythonOperator(
|
||
|
task_id=task_name,
|
||
|
python_callable=metadata_ingestion_workflow,
|
||
|
op_kwargs={"workflow_config": workflow_config},
|
||
|
)
|
||
|
|
||
|
return dag
|