- **username**: Specify the User to connect to Postgres. It should have enough privileges to read all the metadata.
- **password**: Password to connect to Postgres.
- **hostPort**: Enter the fully qualified hostname and port number for your Postgres deployment in the Host and Port field.
- **Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Postgres during the connection. These details must be added as Key-Value pairs.
- **Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Postgres during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
- In case you authenticate with SSO using an external browser popup, then add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "externalbrowser"`
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/catalog-rest-service/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
-`markDeletedTables`: To flag tables as soft-deleted if they are not present anymore in the source system.
-`includeTables`: true or false, to ingest table data. Default is true.
-`includeViews`: true or false, to ingest views definitions.
-`databaseFilterPattern`, `schemaFilterPattern`, `tableFilternPattern`: Note that the they support regex as include or exclude. E.g.,
```yaml
tableFilterPattern:
includes:
- users
- type_test
```
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: no-auth
```
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/catalog-rest-service/src/main/resources/json/schema/security/client).
You can find the different implementation of the ingestion below.
<Collapsetitle="Configure SSO in the Ingestion Workflows">
### Auth0 SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
</Collapse>
### 2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
```python
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
config = """
<yourYAMLconfiguration>
"""
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * ** *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
Note that from connector to connector, this recipe will always be the same.
By updating the YAML configuration, you will be able to extract metadata from different sources.
## Data Profiler and Quality Tests
The Data Profiler workflow will be using the `orm-profiler` processor.
While the `serviceConnection` will still be the same to reach the source system, the `sourceConfig` will be
- You can find all the definitions and types for the `serviceConnection` [here](https://github.com/open-metadata/OpenMetadata/blob/main/catalog-rest-service/src/main/resources/json/schema/entity/services/connections/database/postgresConnection.json).
- The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/catalog-rest-service/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
Note that the filter patterns support regex as includes or excludes. E.g.,
```yaml
tableFilterPattern:
includes:
- *users$
```
#### Processor
Choose the `orm-profiler`. Its config can also be updated to define tests from the YAML itself instead of the UI:
`tableConfig` allows you to set up some configuration at the table level.
All the properties are optional. `metrics` should be one of the metrics listed [here](https://docs.open-metadata.org/openmetadata/ingestion/workflows/profiler/metrics)
#### Workflow Configuration
The same as the metadata ingestion.
### 2. Prepare the Profiler DAG
Here, we follow a similar approach as with the metadata and usage pipelines, although we will use a different Workflow class:
```python
import yaml
from datetime import timedelta
from airflow import DAG
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
from metadata.orm_profiler.api.workflow import ProfilerWorkflow
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="profile_and_test_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
## DBT Integration
You can learn more about how to ingest DBT models' definitions and their lineage [here](https://docs.open-metadata.org/openmetadata/ingestion/workflows/metadata/dbt).