diff --git a/openmetadata-ui/src/main/resources/ui/public/locales/en-US/Database/Databricks.md b/openmetadata-ui/src/main/resources/ui/public/locales/en-US/Database/Databricks.md
index 5080491bd63..40f46e88ef0 100644
--- a/openmetadata-ui/src/main/resources/ui/public/locales/en-US/Database/Databricks.md
+++ b/openmetadata-ui/src/main/resources/ui/public/locales/en-US/Database/Databricks.md
@@ -4,22 +4,16 @@ In this section, we provide guides and references to use the Databricks connecto
## Requirements
-Databricks is a unified analytics platform for big data and AI. To connect to Databricks, you'll need:
-- A Databricks workspace (AWS, Azure, or GCP)
-- SQL Warehouse or All-Purpose Cluster with SQL endpoint
-- Appropriate authentication credentials (Personal Access Token, OAuth, or Azure AD)
+To learn more about the Databricks Connection Details (`hostPort`,`token`, `http_path`) information visit these docs.
$$note
-We support Databricks runtime version 9 and above. Ensure your cluster or SQL warehouse is running a compatible version.
+We support Databricks runtime version 9 and above.
$$
### Usage & Lineage
$$note
-To extract Query Usage and Lineage details, you need:
-- Databricks Premium or higher tier account
-- Access to system.query.history table
-- Proper permissions to read SQL Warehouse query history via REST API
+To get Query Usage and Lineage details, you need a Databricks Premium account, since we will be extracting this information from your SQL Warehouse's history API.
$$
You can find further information on the Databricks connector in the docs.
@@ -33,149 +27,76 @@ $$
$$section
### Host Port $(id="hostPort")
-The hostname and port of your Databricks workspace server. This is the URL where your Databricks workspace is hosted, combined with the HTTPS port (typically 443).
+This parameter specifies the host and port of the Databricks instance. This should be specified as a string in the format `hostname:port`. For example, you might set the hostPort parameter to `adb-xyz.azuredatabricks.net:443`.
-**Format:** `hostname:port`
-**Example:** `adb-xyz.azuredatabricks.net:443` (Azure), `dbc-xyz.cloud.databricks.com:443` (AWS)
-
-To find this:
-1. Navigate to your Databricks workspace
-2. Copy the URL from your browser
-3. Remove the `https://` prefix and any path
-4. Add `:443` for the port
-
-$$note
-If running OpenMetadata ingestion in Docker with Databricks on localhost, use `host.docker.internal:443` instead of `localhost:443`.
-$$
+If you are running the OpenMetadata ingestion in a docker and your services are hosted on the `localhost`, then use `host.docker.internal:3000` as the value.
$$
$$section
### Authentication Type $(id="authType")
-Select the authentication method to connect to your Databricks workspace. Different methods are available depending on your Databricks deployment (AWS, Azure, GCP) and security requirements.
+Select the authentication method to connect to your Databricks workspace.
-#### Personal Access Token $(id="token")
-The simplest authentication method using a Databricks-generated token.
+- **Personal Access Token**: Generated Personal Access Token for Databricks workspace authentication.
-**Token**: Personal Access Token (PAT) generated from your Databricks workspace.
-- Navigate to User Settings → Developer → Access Tokens
-- Click "Generate New Token"
-- Set token lifetime (90 days max for most workspaces)
-- Copy and securely store the token
-- Example format: `dapi1234567890abcdef`
+- **Databricks OAuth**: OAuth2 Machine-to-Machine authentication using a Service Principal.
-$$note
-Personal Access Tokens are user-specific and inherit the user's permissions. For production, consider using Service Principal authentication.
+- **Azure AD Setup**: Specifically for Azure Databricks workspaces that use Azure Active Directory for identity management. Uses Azure Service Principal authentication through Azure AD.
$$
-#### Databricks OAuth $(id="clientId,clientSecret")
-OAuth2 Machine-to-Machine authentication using Service Principal (recommended for production).
+$$section
+### Token $(id="token")
+Personal Access Token (PAT) for authenticating with Databricks workspace.
+(e.g., `dapi1234567890abcdef`)
+$$
-**Client ID** $(id="clientId"): The Application ID of your Service Principal
-- Created in Databricks Account Console → Service Principals
-- Format: UUID (e.g., `12345678-1234-1234-1234-123456789abc`)
+$$section
+### Client ID $(id="clientId")
+The Application ID of your Databricks Service Principal for OAuth2 authentication.
+(e.g., `12345678-1234-1234-1234-123456789abc`)
+$$
-**Client Secret** $(id="clientSecret"): OAuth secret for the Service Principal
-- Generated after creating the Service Principal
-- Navigate to the Service Principal → Generate Secret
-- Valid for up to 2 years
-- Store securely - cannot be retrieved after creation
+$$section
+### Client Secret $(id="clientSecret")
+OAuth secret for the Databricks Service Principal.
+$$
-#### Azure AD Setup $(id="azureClientId,azureClientSecret,azureTenantId")
-For Azure Databricks workspaces using Azure Active Directory authentication.
+$$section
+### Azure Client ID $(id="azureClientId")
+Azure Active Directory Application (client) ID for Azure Databricks authentication.
+(e.g., `a1b2c3d4-e5f6-7890-abcd-ef1234567890`)
+$$
-**Azure Client ID** $(id="azureClientId"): Azure AD Application (client) ID
-- Found in Azure Portal → App Registrations → Your App → Overview
-- Format: UUID
+$$section
+### Azure Client Secret $(id="azureClientSecret")
+Secret key for the Azure AD Application.
+$$
-**Azure Client Secret** $(id="azureClientSecret"): Secret created for the Azure AD App
-- Azure Portal → App Registrations → Your App → Certificates & Secrets
-- Create new client secret with appropriate expiry
-
-**Azure Tenant ID** $(id="azureTenantId"): Your Azure AD tenant identifier
-- Azure Portal → Azure Active Directory → Overview
-- Format: UUID
+$$section
+### Azure Tenant ID $(id="azureTenantId")
+Your Azure Active Directory tenant identifier.
+(e.g., `98765432-dcba-4321-abcd-1234567890ab`)
$$
$$section
### HTTP Path $(id="httpPath")
-The HTTP endpoint path for your Databricks compute resource (SQL Warehouse or Cluster). This path routes queries to the appropriate compute engine.
-
-**For SQL Warehouses:**
-- Format: `/sql/1.0/warehouses/{warehouse_id}`
-- Find in: SQL Warehouses → Your Warehouse → Connection Details → HTTP Path
-- Example: `/sql/1.0/warehouses/abc123def456`
-
-**For All-Purpose Clusters:**
-- Format: `/sql/protocolv1/o/{workspace_id}/{cluster_id}`
-- Find in: Compute → Your Cluster → Advanced Options → JDBC/ODBC → HTTP Path
-- Example: `/sql/protocolv1/o/1234567890/0123-456789-abcde12`
-
-$$note
-SQL Warehouses are recommended for metadata extraction as they provide better performance and cost efficiency for SQL workloads.
-$$
+Databricks compute resources URL. E.g., `/sql/1.0/warehouses/xyz123`.
$$
$$section
### Catalog $(id="catalog")
-Unity Catalog name to restrict metadata extraction scope. Unity Catalog is Databricks' data governance solution that organizes data assets.
-
-**Optional field** - Leave blank to scan all accessible catalogs.
-
-Common values:
-- `main` - Default catalog in Unity Catalog-enabled workspaces
-- `hive_metastore` - Legacy Hive metastore (pre-Unity Catalog)
-- Custom catalog names created in your workspace
-
-$$note
-Unity Catalog requires Databricks Premium or higher. Legacy workspaces only have `hive_metastore`.
-$$
+Catalog of the data source. This is an optional parameter, if you would like to restrict the metadata reading to a single catalog. When left blank, OpenMetadata Ingestion attempts to scan all the catalogs. E.g., `hive_metastore`
$$
$$section
### Database Schema $(id="databaseSchema")
-Specific schema (database) within a catalog to limit metadata extraction.
-
-**Optional field** - Leave blank to scan all schemas in the specified catalog(s).
-
-Format: `schema_name` (not `catalog.schema`)
-Example: `default`, `bronze`, `silver`, `gold`
-
-Use this to:
-- Reduce extraction time for large workspaces
-- Focus on specific business domains
-- Exclude development or temporary schemas
-$$
-
-$$section
-### Query History Table $(id="queryHistoryTable")
-System table containing query execution history for usage and lineage extraction.
-
-**Default:** `system.query.history`
-
-This table stores:
-- Query text and execution plans
-- User and timestamp information
-- Resource usage metrics
-- Data lineage relationships
-
-$$note
-Requires Databricks Premium tier and appropriate permissions on the system catalog. The user must have SELECT permission on this table.
-$$
+Schema of the data source. This is optional parameter, if you would like to restrict the metadata reading to a single schema. When left blank, OpenMetadata Ingestion attempts to scan all the schemas.
$$
$$section
### Connection Timeout $(id="connectionTimeout")
-Maximum seconds to wait for Databricks cluster startup and connection establishment.
+The maximum amount of time (in seconds) to wait for a successful connection to the data source. If the connection attempt takes longer than this timeout period, an error will be returned.
-**Default:** 120 seconds
-**Recommended:**
-- 120-180 for SQL Warehouses (usually pre-warmed)
-- 300-600 for All-Purpose Clusters (cold start can take 5-10 minutes)
-
-Increase this value if you see timeout errors, especially when:
-- Using auto-scaling clusters that start from zero nodes
-- Connecting to clusters in auto-pause mode
-- Network latency is high between OpenMetadata and Databricks
+If your connection fails because your cluster has not had enough time to start, you can try updating this parameter with a bigger number.
$$
$$section