MINOR: add Mongodb profiler docs (#15240)

* docs(mongodb): added profiler docs
This commit is contained in:
Imri Paran 2024-02-23 10:28:10 +01:00 committed by GitHub
parent 1efbeb1204
commit 7f111c7ed8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 294 additions and 3 deletions

View File

@ -12,7 +12,7 @@ slug: /connectors/database/mongodb
| Stage | BETA |
| Metadata | {% icon iconName="check" /%} |
| Query Usage | {% icon iconName="cross" /%} |
| Data Profiler | {% icon iconName="cross" /%} |
| Data Profiler | {% icon iconName="check" /%} |
| Data Quality | {% icon iconName="cross" /%} |
| Stored Procedures | {% icon iconName="cross" /%} |
| Owners | {% icon iconName="cross" /%} |
@ -35,6 +35,7 @@ Configure and schedule MongoDB metadata workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [Data Profiler](#data-profiler)
{% partial file="/v1.3/connectors/ingestion-modes-tiles.md" variables={yamlPath: "/connectors/database/mongodb/yaml"} /%}
@ -79,3 +80,18 @@ To fetch the metadata from MongoDB to OpenMetadata, the MongoDB user must have a
{% partial file="/v1.3/connectors/troubleshooting.md" /%}
{% partial file="/v1.3/connectors/database/related.md" /%}
## Data Profiler
{%inlineCallout icon="description" bold="OpenMetadata 1.3.1 or later" href="/deployment"%}
To deploy OpenMetadata, check the Deployment guides.
{%/inlineCallout%}
[Profiler deployment](/connectors/ingestion/workflows/profiler)
### Limitations
The MongodDB data profiler current supports only the following features:
1. **Row count**: The number of rows in the collection. Sampling or custom query is not supported.
2. **Sample data:** If a custom query is defined it will be used for sample data.

View File

@ -8,11 +8,11 @@ slug: /connectors/database/mongodb/yaml
{% multiTablesWrapper %}
| Feature | Status |
| :----------------- | :--------------------------- |
| :----------------- |:-----------------------------|
| Stage | BETA |
| Metadata | {% icon iconName="check" /%} |
| Query Usage | {% icon iconName="cross" /%} |
| Data Profiler | {% icon iconName="cross" /%} |
| Data Profiler | {% icon iconName="check" /%} |
| Data Quality | {% icon iconName="cross" /%} |
| Stored Procedures | {% icon iconName="cross" /%} |
| Owners | {% icon iconName="cross" /%} |
@ -34,6 +34,7 @@ Configure and schedule MongoDB metadata workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [Data Profiler](#data-profiler)
{% partial file="/v1.3/connectors/ingestion-modes-tiles.md" variables={yamlPath: "/connectors/database/mongodb/yaml"} /%}
@ -154,6 +155,279 @@ source:
{% partial file="/v1.3/connectors/yaml/ingestion-cli.md" /%}
## Data Profiler
The Data Profiler workflow will be using the `orm-profiler` processor.
After running a Metadata Ingestion workflow, we can run Data Profiler workflow.
While the `serviceName` will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the `serviceConnection` details from the server.
### Limitations
The MongodDB data profiler current supports only the following features:
1. **Row count**: The number of rows in the collection. Sampling or custom query is not supported.
2. **Sample data:** If a custom query is defined it will be used for sample data.
### 1. Define the YAML Config
This is a sample config for the profiler:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=13 %}
#### Source Configuration - Source Config
You can find all the definitions and types for the `sourceConfig` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
**generateSampleData**: Option to turn on/off generating sample data.
{% /codeInfo %}
{% codeInfo srNumber=16 %}
**processPiiSensitive**: Optional configuration to automatically tag columns that might contain sensitive information.
{% /codeInfo %}
{% codeInfo srNumber=18 %}
**timeoutSeconds**: Profiler Timeout in Seconds
{% /codeInfo %}
{% codeInfo srNumber=20 %}
**schemaFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=21 %}
**tableFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=22 %}
#### Processor Configuration
Choose the `orm-profiler`. Its config can also be updated to define tests from the YAML itself instead of the UI:
**tableConfig**: `tableConfig` allows you to set up some configuration at the table level.
{% /codeInfo %}
{% codeInfo srNumber=23 %}
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
{% codeInfo srNumber=24 %}
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml
source:
type: monogodb
serviceName: local_mongodb
sourceConfig:
config:
type: Profiler
```
```yaml {% srNumber=13 %}
generateSampleData: true
```
```yaml {% srNumber=16 %}
processPiiSensitive: false
```
```yaml {% srNumber=18 %}
# timeoutSeconds: 43200
```
```yaml {% srNumber=20 %}
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
```
```yaml {% srNumber=21 %}
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
```
```yaml {% srNumber=22 %}
processor:
type: orm-profiler
config: {} # Remove braces if adding properties
# tableConfig:
# - fullyQualifiedName: <table fqn>
# profileQuery: <query to use for fetching the sample data>
```
```yaml {% srNumber=23 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=24 %}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
```
{% /codeBlock %}
{% /codePreview %}
- You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from [here](/connectors/ingestion/workflows/profiler)
### 2. Prepare the Profiler DAG
Here, we follow a similar approach as with the metadata and usage pipelines, although we will use a different Workflow class:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=25 %}
#### Import necessary modules
The `ProfilerWorkflow` class that is being imported is a part of a metadata orm_profiler framework, which defines a process of extracting Profiler data.
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
{% /codeInfo %}
{% codeInfo srNumber=26 %}
**Default arguments for all tasks in the Airflow DAG.**
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
{% /codeInfo %}
{% codeInfo srNumber=27 %}
- **config**: Specifies config for the profiler as we prepare above.
{% /codeInfo %}
{% codeInfo srNumber=28 %}
- **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `ProfilerWorkflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
{% /codeInfo %}
{% codeInfo srNumber=29 %}
- **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
- For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag).
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.py" %}
```python {% srNumber=26 %}
import yaml
from datetime import timedelta
from airflow import DAG
from metadata.profiler.api.workflow import ProfilerWorkflow
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
```
```python {% srNumber=27 %}
default_args = {
"owner": "user_name",
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(seconds=10),
"execution_timeout": timedelta(minutes=60),
}
```
```python {% srNumber=28 %}
config = """
<your YAML configuration>
"""
```
```python {% srNumber=29 %}
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = ProfilerWorkflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
```
```python {% srNumber=30 %}
with DAG(
"profiler_example",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="profile_and_test_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
{% /codeBlock %}
{% /codePreview %}
## dbt Integration
{% tilesContainer %}
@ -165,3 +439,4 @@ description="Learn more about how to ingest dbt models' definitions and their li
link="/connectors/ingestion/workflows/dbt" /%}
{% /tilesContainer %}