FIXES 13209: Add Sagemaker Model Storage (#15986)

* Add Sagemaker Model Storage

* Fix checkstyle

* Sagemaker unittest

* Small refactor to be less verbose
This commit is contained in:
IceS2 2024-04-22 16:53:25 +02:00 committed by GitHub
parent 14698aff62
commit cb801dedb4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 153 additions and 1 deletions

View File

@ -160,7 +160,10 @@ class SagemakerSource(MlModelServiceSource):
"""
try:
model_info = self.sagemaker.describe_model(ModelName=model_name)
return MlStore(imageRepository=model_info["PrimaryContainer"]["Image"])
storage = model_info.get("PrimaryContainer", {}).get("ModelDataUrl")
image_repository = model_info.get("PrimaryContainer", {}).get("Image")
if image_repository or storage:
return MlStore(storage=storage, imageRepository=image_repository)
except ValidationError as err:
logger.debug(traceback.format_exc())
logger.warning(

View File

@ -0,0 +1,149 @@
# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Test Sagemaker.
"""
from unittest import TestCase
from unittest.mock import patch
from metadata.generated.schema.api.data.createMlModel import CreateMlModelRequest
from metadata.generated.schema.entity.data.mlmodel import MlStore
from metadata.ingestion.api.models import Either
from metadata.ingestion.api.parser import parse_workflow_config_gracefully
from metadata.ingestion.source.mlmodel.sagemaker.metadata import SagemakerSource
ML_MODEL_SERVICE_MOCK = "unittest_sagemaker"
MODELS_MOCK = [
{
"ModelName": "model_1",
"ModelArn": "arn::model_1",
"CreationTime": "2020-01-01 00:00:00",
},
{
"ModelName": "model_2",
"ModelArn": "arn::model_2",
"CreationTime": "2020-01-01 00:00:00",
},
{
"ModelName": "model_3",
"ModelArn": "arn::model_3",
"CreationTime": "2020-01-01 00:00:00",
},
]
MODEL_DESCRIPTIONS_MOCK = {
"model_1": {
"PrimaryContainer": {
"Image": "image_1",
"ModelDataUrl": "file://storage_1",
}
},
"model_2": {
"PrimaryContainer": {
"ModelDataUrl": "file://storage_2",
}
},
"model_3": {},
}
EXPECTED_MODELS = [
CreateMlModelRequest(
name="model_1",
algorithm="mlmodel",
mlStore=MlStore(storage="file://storage_1", imageRepository="image_1"),
service=ML_MODEL_SERVICE_MOCK,
),
CreateMlModelRequest(
name="model_2",
algorithm="mlmodel",
mlStore=MlStore(storage="file://storage_2"),
service=ML_MODEL_SERVICE_MOCK,
),
CreateMlModelRequest(
name="model_3", algorithm="mlmodel", mlStore=None, service=ML_MODEL_SERVICE_MOCK
),
]
class SagemakerClientMock:
def __init__(self):
pass
def list_models(self, *args, **kwargs):
return {"Models": MODELS_MOCK, "NextToken": None}
def describe_model(self, modelName: str, *args, **kwargs):
return MODEL_DESCRIPTIONS_MOCK.get(modelName)
sagemaker_config = {
"source": {
"type": "sagemaker",
"serviceName": ML_MODEL_SERVICE_MOCK,
"serviceConnection": {
"config": {
"type": "SageMaker",
"awsConfig": {
"awsAccessKeyId": "access_key",
"awsSecretAccessKey": "secret_access_key",
"awsSessionToken": "session_token",
"awsRegion": "region",
},
}
},
"sourceConfig": {
"config": {
"type": "MlModelMetadata",
}
},
},
"sink": {
"type": "metadata-rest",
"config": {},
},
"workflowConfig": {
"openMetadataServerConfig": {
"hostPort": "http://localhost:8585/api",
"authProvider": "openmetadata",
"securityConfig": {
"jwtToken": "eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5uUjKWOCU0B_j08WXBiEC0mr0zNREkqVfwFDD-d24HlNEbrqioLsBuFRiwIWKc1m_ZlVQbG7P36RUxhuv2vbSp80FKyNM-Tj93FDzq91jsyNmsQhyNv_fNr3TXfzzSPjHt8Go0FMMP66weoKMgW2PbXlhVKwEuXUHyakLLzewm9UMeQaEiRzhiTMU3UkLXcKbYEJJvfNFcLwSl9W8JCO_l0Yj3ud-qt_nQYEZwqW6u5nfdQllN133iikV4fM5QZsMCnm8Rq1mvLR0y9bmJiD7fwM1tmJ791TUWqmKaTnP49U493VanKpUAfzIiOiIbhg"
},
}
},
}
class SagemakerTest(TestCase):
@patch(
"metadata.ingestion.source.mlmodel.sagemaker.metadata.SagemakerSource.test_connection"
)
def __init__(self, methodName, test_connection) -> None:
super().__init__(methodName)
test_connection.return_value = False
self.config = parse_workflow_config_gracefully(sagemaker_config)
self.sagemaker_source = SagemakerSource.create(
sagemaker_config["source"],
self.config.workflowConfig.openMetadataServerConfig,
)
self.sagemaker_source.sagemaker = SagemakerClientMock()
self.sagemaker_source.context.get().__dict__[
"mlmodel_service"
] = ML_MODEL_SERVICE_MOCK
def test_ccreate_ml_model_request_is_correct(self):
for i, mlmodel in enumerate(self.sagemaker_source.get_mlmodels()):
assert self.sagemaker_source.yield_mlmodel(mlmodel) == Either(
right=EXPECTED_MODELS[i]
)