datalake-csv-files-ingestion-added (#5343)

datalake-csv-files-ingestion-added (#5343)
This commit is contained in:
Abhishek Pandey 2022-06-15 12:27:21 +05:30 committed by GitHub
parent 8ec2b985c8
commit e8975aac01
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 597 additions and 1 deletions

View File

@ -0,0 +1,83 @@
{
"$id": "https://open-metadata.org/schema/entity/services/connections/database/datalakeConnection.json",
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "DatalakeConnection",
"description": "Datalake Connection Config",
"type": "object",
"javaType": "org.openmetadata.catalog.services.connections.database.DatalakeConnection",
"definitions": {
"datalakeType": {
"description": "Service type.",
"type": "string",
"enum": ["Datalake"],
"default": "Datalake"
},
"GCSConfig": {
"title": "DataLake GCS Config Source",
"description": "DataLake Catalog and Manifest files in GCS storage. We will search for catalog.json and manifest.json.",
"properties": {
"securityConfig": {
"title": "DataLake GCS Security Config",
"$ref": "../../../../security/credentials/gcsCredentials.json"
}
}
},
"S3Config": {
"title": "DataLake S3 Config Source",
"description": "DataLake Catalog and Manifest files in S3 bucket. We will search for catalog.json and manifest.json.",
"properties": {
"securityConfig": {
"title": "DataLake S3 Security Config",
"$ref": "../../../../security/credentials/awsCredentials.json"
}
}
}
},
"properties": {
"type": {
"title": "Service Type",
"description": "Service Type",
"$ref": "#/definitions/datalakeType",
"default": "Datalake"
},
"configSource": {
"title": "DataLake Configuration Source",
"description": "Available sources to fetch files.",
"oneOf": [
{
"$ref": "#/definitions/S3Config"
},
{
"$ref": "#/definitions/GCSConfig"
}
]
},
"bucketName": {
"title": "Bucket Name",
"description": "Bucket Name of the data source.",
"type": "string",
"default": ""
},
"prefix": {
"title": "Prefix",
"description": "Prefix of the data source.",
"type": "string",
"default": ""
},
"connectionOptions": {
"title": "Connection Options",
"$ref": "../connectionBasicType.json#/definitions/connectionOptions"
},
"connectionArguments": {
"title": "Connection Arguments",
"$ref": "../connectionBasicType.json#/definitions/connectionArguments"
},
"supportsMetadataExtraction": {
"title": "Supports Metadata Extraction",
"$ref": "../connectionBasicType.json#/definitions/supportsMetadataExtraction"
}
},
"additionalProperties": false,
"required": ["configSource"]
}

View File

@ -36,7 +36,8 @@
"DeltaLake",
"Salesforce",
"SampleData",
"PinotDB"
"PinotDB",
"Datalake"
],
"javaEnums": [
{
@ -116,6 +117,9 @@
},
{
"name": "PinotDB"
},
{
"name": "Datalake"
}
]
},
@ -202,6 +206,9 @@
},
{
"$ref": "./connections/database/pinotDBConnection.json"
},
{
"$ref": "./connections/database/datalakeConnection.json"
}
]
}

View File

@ -0,0 +1,26 @@
source:
type: datalake
serviceName: local_datalake4
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
awsAccessKeyId: aws access key id
awsSecretAccessKey: aws secret access key
awsRegion: aws region
bucketName: bucket name
prefix: prefix
sourceConfig:
config:
tableFilterPattern:
includes:
- ''
sink:
type: metadata-rest
config: {}
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: no-auth

View File

@ -80,6 +80,15 @@ plugins: Dict[str, Set[str]] = {
"bigquery-usage": {"google-cloud-logging", "cachetools"},
"docker": {"python_on_whales==0.34.0"},
"backup": {"boto3~=1.19.12"},
"datalake": {
"google-cloud-storage==1.43.0",
"pandas==1.3.5",
"gcsfs==2022.5.0",
"s3fs==0.4.2",
"dask==2022.2.0",
"pyarrow==6.0.1",
"boto3~=1.19.12",
},
"dbt": {"google-cloud", "boto3", "google-cloud-storage==1.43.0"},
"druid": {"pydruid>=0.6.2"},
"elasticsearch": {"elasticsearch==7.13.1"},

View File

@ -0,0 +1,280 @@
# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
DataLake connector to fetch metadata from a files stored s3, gcs and Hdfs
"""
import traceback
import uuid
from typing import Iterable, Optional
from metadata.generated.schema.entity.data.database import Database
from metadata.generated.schema.entity.data.databaseSchema import DatabaseSchema
from metadata.generated.schema.entity.data.table import Column, Table, TableData
from metadata.generated.schema.entity.services.connections.database.datalakeConnection import (
DatalakeConnection,
GCSConfig,
S3Config,
)
from metadata.generated.schema.entity.services.connections.metadata.openMetadataConnection import (
OpenMetadataConnection,
)
from metadata.generated.schema.entity.services.databaseService import DatabaseService
from metadata.generated.schema.metadataIngestion.databaseServiceMetadataPipeline import (
DatabaseServiceMetadataPipeline,
)
from metadata.generated.schema.metadataIngestion.workflow import (
Source as WorkflowSource,
)
from metadata.generated.schema.type.entityReference import EntityReference
from metadata.ingestion.api.common import Entity
from metadata.ingestion.api.source import InvalidSourceException, Source, SourceStatus
from metadata.ingestion.models.ometa_table_db import OMetaDatabaseAndTable
from metadata.ingestion.ometa.ometa_api import OpenMetadata
from metadata.ingestion.source.database.common_db_source import SQLSourceStatus
from metadata.utils.connections import get_connection, test_connection
from metadata.utils.filters import filter_by_table
from metadata.utils.gcs_utils import (
read_csv_from_gcs,
read_json_from_gcs,
read_parquet_from_gcs,
read_tsv_from_gcs,
)
from metadata.utils.logger import ingestion_logger
from metadata.utils.s3_utils import (
read_csv_from_s3,
read_json_from_s3,
read_parquet_from_s3,
read_tsv_from_s3,
)
logger = ingestion_logger()
class DatalakeSource(Source[Entity]):
def __init__(self, config: WorkflowSource, metadata_config: OpenMetadataConnection):
super().__init__()
self.status = SQLSourceStatus()
self.config = config
self.source_config: DatabaseServiceMetadataPipeline = (
self.config.sourceConfig.config
)
self.metadata_config = metadata_config
self.metadata = OpenMetadata(metadata_config)
self.service_connection = self.config.serviceConnection.__root__.config
self.service = self.metadata.get_service_or_create(
entity=DatabaseService, config=config
)
self.connection = get_connection(self.service_connection)
self.client = self.connection.client
@classmethod
def create(cls, config_dict, metadata_config: OpenMetadataConnection):
config: WorkflowSource = WorkflowSource.parse_obj(config_dict)
connection: DatalakeConnection = config.serviceConnection.__root__.config
if not isinstance(connection, DatalakeConnection):
raise InvalidSourceException(
f"Expected DatalakeConnection, but got {connection}"
)
return cls(config, metadata_config)
def prepare(self):
pass
def next_record(self) -> Iterable[Entity]:
try:
bucket_name = self.service_connection.bucketName
prefix = self.service_connection.prefix
if isinstance(self.service_connection.configSource, GCSConfig):
if bucket_name:
yield from self.get_gcs_files(bucket_name, prefix)
else:
for bucket in self.client.list_buckets():
yield from self.get_gcs_files(bucket.name, prefix)
if isinstance(self.service_connection.configSource, S3Config):
if bucket_name:
yield from self.get_s3_files(bucket_name, prefix)
else:
for bucket in self.client.list_buckets()["Buckets"]:
yield from self.get_s3_files(bucket["Name"], prefix)
except Exception as err:
logger.error(traceback.format_exc())
logger.error(err)
def get_gcs_files(self, bucket_name, prefix):
bucket = self.client.get_bucket(bucket_name)
for key in bucket.list_blobs(prefix=prefix):
try:
if filter_by_table(
self.config.sourceConfig.config.tableFilterPattern, key.name
):
self.status.filter(
"{}".format(key["Key"]),
"Table pattern not allowed",
)
continue
if key.name.endswith(".csv"):
df = read_csv_from_gcs(key, bucket_name)
yield from self.ingest_tables(key.name, df, bucket_name)
if key.name.endswith(".tsv"):
df = read_tsv_from_gcs(key, bucket_name)
yield from self.ingest_tables(key.name, df, bucket_name)
if key.name.endswith(".json"):
df = read_json_from_gcs(key)
yield from self.ingest_tables(key.name, df, bucket_name)
if key.name.endswith(".parquet"):
df = read_parquet_from_gcs(key, bucket_name)
yield from self.ingest_tables(key.name, df, bucket_name)
except Exception as err:
logger.debug(traceback.format_exc())
logger.error(err)
def get_s3_files(self, bucket_name, prefix):
kwargs = {"Bucket": bucket_name}
if prefix:
kwargs["prefix"] = prefix
for key in self.client.list_objects(**kwargs)["Contents"]:
try:
if filter_by_table(
self.config.sourceConfig.config.tableFilterPattern, key["Key"]
):
self.status.filter(
"{}".format(key["Key"]),
"Table pattern not allowed",
)
continue
if key["Key"].endswith(".csv"):
df = read_csv_from_s3(self.client, key, bucket_name)
yield from self.ingest_tables(key["Key"], df, bucket_name)
if key["Key"].endswith(".tsv"):
df = read_tsv_from_s3(self.client, key, bucket_name)
yield from self.ingest_tables(key["Key"], df, bucket_name)
if key["Key"].endswith(".json"):
df = read_json_from_s3(self.client, key, bucket_name)
yield from self.ingest_tables(key["Key"], df, bucket_name)
if key["Key"].endswith(".parquet"):
df = read_parquet_from_s3(self.client, key, bucket_name)
yield from self.ingest_tables(key["Key"], df, bucket_name)
except Exception as err:
logger.debug(traceback.format_exc())
logger.error(err)
def ingest_tables(self, key, df, bucket_name) -> Iterable[OMetaDatabaseAndTable]:
try:
table_columns = self.get_columns(df)
database_entity = Database(
id=uuid.uuid4(),
name="default",
service=EntityReference(id=self.service.id, type="databaseService"),
)
table_entity = Table(
id=uuid.uuid4(),
name=key,
description="",
columns=table_columns,
)
schema_entity = DatabaseSchema(
id=uuid.uuid4(),
name=bucket_name,
database=EntityReference(id=database_entity.id, type="database"),
service=EntityReference(id=self.service.id, type="databaseService"),
)
table_and_db = OMetaDatabaseAndTable(
table=table_entity,
database=database_entity,
database_schema=schema_entity,
)
yield table_and_db
except Exception as err:
logger.debug(traceback.format_exc())
logger.error(err)
def fetch_sample_data(self, df, table: str) -> Optional[TableData]:
try:
cols = []
table_columns = self.get_columns(df)
for col in table_columns:
cols.append(col.name.__root__)
table_rows = df.values.tolist()
return TableData(columns=cols, rows=table_rows)
# Catch any errors and continue the ingestion
except Exception as err: # pylint: disable=broad-except
logger.debug(traceback.format_exc())
logger.error(f"Failed to generate sample data for {table} - {err}")
return None
def get_columns(self, df):
df_columns = list(df.columns)
for column in df_columns:
try:
if hasattr(df[column], "dtypes"):
if df[column].dtypes.name == "int64":
data_type = "INT"
if df[column].dtypes.name == "object":
data_type = "INT"
else:
data_type = "STRING"
parsed_string = {}
parsed_string["dataTypeDisplay"] = column
parsed_string["dataType"] = data_type
parsed_string["name"] = column[:64]
parsed_string["dataLength"] = parsed_string.get("dataLength", 1)
yield Column(**parsed_string)
except Exception as err:
logger.debug(traceback.format_exc())
logger.error(err)
def close(self):
pass
def get_status(self) -> SourceStatus:
return self.status
def test_connection(self) -> None:
test_connection(self.connection)

View File

@ -84,3 +84,10 @@ class PowerBiClient:
class LookerClient:
def __init__(self, client) -> None:
self.client = client
@dataclass
class DatalakeClient:
def __init__(self, client, config) -> None:
self.client = client
self.config = config

View File

@ -16,6 +16,7 @@ import json
import logging
import os
import traceback
from distutils.command.config import config
from functools import singledispatch
from typing import Union
@ -53,6 +54,11 @@ from metadata.generated.schema.entity.services.connections.database.bigQueryConn
from metadata.generated.schema.entity.services.connections.database.databricksConnection import (
DatabricksConnection,
)
from metadata.generated.schema.entity.services.connections.database.datalakeConnection import (
DatalakeConnection,
GCSConfig,
S3Config,
)
from metadata.generated.schema.entity.services.connections.database.deltaLakeConnection import (
DeltaLakeConnection,
)
@ -73,6 +79,7 @@ from metadata.generated.schema.entity.services.connections.messaging.kafkaConnec
)
from metadata.orm_profiler.orm.functions.conn_test import ConnTestFn
from metadata.utils.connection_clients import (
DatalakeClient,
DeltaLakeClient,
DynamoClient,
GlueClient,
@ -565,3 +572,63 @@ def _(connection: LookerClient) -> None:
raise SourceConnectionException(
f"Unknown error connecting with {connection} - {err}."
)
@test_connection.register
def _(connection: DatalakeClient) -> None:
"""
Test that we can connect to the source using the given aws resource
:param engine: boto service resource to test
:return: None or raise an exception if we cannot connect
"""
from botocore.client import ClientError
try:
config = connection.config.configSource
if isinstance(config, GCSConfig):
if connection.config.bucketName:
connection.client.get_bucket(connection.config.bucketName)
else:
connection.client.list_buckets()
if isinstance(config, S3Config):
if connection.config.bucketName:
connection.client.list_objects(Bucket=connection.config.bucketName)
else:
connection.client.list_buckets()
except ClientError as err:
raise SourceConnectionException(
f"Connection error for {connection} - {err}. Check the connection details."
)
@singledispatch
def get_datalake_client(config):
if config:
raise NotImplementedError(
f"Config not implemented for type {type(config)}: {config}"
)
@get_connection.register
def _(connection: DatalakeConnection, verbose: bool = False) -> DatalakeClient:
datalake_connection = get_datalake_client(connection.configSource)
return DatalakeClient(client=datalake_connection, config=connection)
@get_datalake_client.register
def _(config: S3Config):
from metadata.utils.aws_client import AWSClient
s3_client = AWSClient(config.securityConfig).get_client(service_name="s3")
return s3_client
@get_datalake_client.register
def _(config: GCSConfig):
from google.cloud import storage
set_google_credentials(gcs_credentials=config.securityConfig)
gcs_client = storage.Client()
return gcs_client

View File

@ -0,0 +1,58 @@
# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def read_csv_from_gcs(key, bucket_name):
import dask.dataframe as dd
df = dd.read_csv(f"gs://{bucket_name}/{key.name}")
return df
def read_tsv_from_gcs(key, bucket_name):
import dask.dataframe as dd
df = dd.read_csv(f"gs://{bucket_name}/{key.name}", sep="\t")
return df
def read_json_from_gcs(key):
import pandas as pd
from metadata.utils.logger import utils_logger
logger = utils_logger()
import json
import traceback
try:
data = key.download_as_string().decode()
df = pd.DataFrame.from_dict(json.loads(data))
return df
except ValueError as verr:
logger.debug(traceback.format_exc())
logger.error(verr)
def read_parquet_from_gcs(key, bucket_name):
import gcsfs
import pyarrow.parquet as pq
gs = gcsfs.GCSFileSystem()
arrow_df = pq.ParquetDataset(f"gs://{bucket_name}/{key.name}", filesystem=gs)
df = arrow_df.read_pandas().to_pandas()
return df

View File

@ -0,0 +1,57 @@
# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def read_csv_from_s3(client, key, bucket_name):
from io import StringIO
import pandas as pd
csv_obj = client.get_object(Bucket=bucket_name, Key=key["Key"])
body = csv_obj["Body"]
csv_string = body.read().decode("utf-8")
df = pd.read_csv(StringIO(csv_string))
return df
def read_tsv_from_s3(client, key, bucket_name):
from io import StringIO
import pandas as pd
csv_obj = client.get_object(Bucket=bucket_name, Key=key["Key"])
body = csv_obj["Body"]
csv_string = body.read().decode("utf-8")
df = pd.read_csv(StringIO(csv_string), sep="\t")
return df
def read_json_from_s3(client, key, bucket_name):
import json
import pandas as pd
obj = client.get_object(Bucket=bucket_name, Key=key["Key"])
json_text = obj["Body"].read().decode("utf-8")
data = json.loads(json_text)
df = pd.DataFrame.from_dict(data)
return df
def read_parquet_from_s3(client, key, bucket_name):
import dask.dataframe as dd
df = dd.read_parquet(f"s3://{bucket_name}/{key['Key']}")
return df

View File

@ -8,6 +8,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Hosts the singledispatch to build source URLs
"""