--- title: Run the ingestion from your Airflow slug: /deployment/ingestion/external/airflow collate: false --- {% partial file="/v1.8/deployment/external-ingestion.md" /%} # Run the ingestion from your Airflow OpenMetadata integrates with Airflow to orchestrate ingestion workflows. You can use Airflow to [extract metadata](/connectors/pipeline/airflow) and [deploy workflows] (/deployment/ingestion/openmetadata) directly. This guide explains how to run ingestion workflows in Airflow using three different operators: 1. [Python Operator](#python-operator) 2. [Docker Operator](#docker-operator) 3. [Python Virtualenv Operator](#python-virtualenv-operator) ## Using the Python Operator ### Prerequisites Install the `openmetadata-ingestion` package in your Airflow environment. This approach works best if you have access to the Airflow host and can manage dependencies. #### Installation Command: ``` pip3 install openmetadata-ingestion[]==x.y.z ``` -Replace [](https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/setup.py) with the sources to ingest, such as mysql, snowflake, or s3. -Replace x.y.z with the OpenMetadata version matching your server (e.g., 1.6.1). ### Example ``` pip3 install openmetadata-ingestion[mysql,snowflake,s3]==1.6.1 ``` ### Example DAG ```python import yaml from datetime import timedelta from airflow import DAG try: from airflow.operators.python import PythonOperator except ModuleNotFoundError: from airflow.operators.python_operator import PythonOperator from metadata.config.common import load_config_file from metadata.workflow.metadata import MetadataWorkflow from airflow.utils.dates import days_ago default_args = { "owner": "user_name", "email": ["username@org.com"], "email_on_failure": False, "retries": 3, "retry_delay": timedelta(minutes=5), "execution_timeout": timedelta(minutes=60) } config = """ """ def metadata_ingestion_workflow(): workflow_config = yaml.safe_load(config) workflow = MetadataWorkflow.create(workflow_config) workflow.execute() workflow.raise_from_status() workflow.print_status() workflow.stop() with DAG( "sample_data", default_args=default_args, description="An example DAG which runs a OpenMetadata ingestion workflow", start_date=days_ago(1), is_paused_upon_creation=False, schedule_interval='*/5 * * * *', catchup=False, ) as dag: ingest_task = PythonOperator( task_id="ingest_using_recipe", python_callable=metadata_ingestion_workflow, ) ``` ### Key Notes - **Function Setup**: The `python_callable` argument in the `PythonOperator` executes the `metadata_ingestion_workflow` function, which instantiates the workflow and runs the ingestion process. - **Drawback**: This method requires pre-installed dependencies, which may not always be feasible. Consider using the **DockerOperator** or **PythonVirtualenvOperator** as alternatives. ## Using the Docker Operator For this operator, we can use the `openmetadata/ingestion-base` image. This is useful to prepare DAGs without any installation required on the environment, although it needs for the host to have access to the Docker commands. ### Prerequisites Ensure the Airflow host can run Docker commands. For Docker Compose setups, map the Docker socket as follows: ### Example ```yaml volumes: - /var/run/docker.sock:/var/run/docker.sock:z # Need 666 permissions to run DockerOperator ``` ### Example DAG ```python from datetime import datetime from airflow import models from airflow.providers.docker.operators.docker import DockerOperator config = """ """ with models.DAG( "ingestion-docker-operator", schedule_interval='*/5 * * * *', start_date=datetime(2021, 1, 1), catchup=False, tags=["OpenMetadata"], ) as dag: DockerOperator( command="python main.py", image="openmetadata/ingestion-base:0.13.2", environment={"config": config, "pipelineType": "metadata"}, docker_url="unix://var/run/docker.sock", # To allow to start Docker. Needs chmod 666 permissions tty=True, auto_remove="True", network_mode="host", # To reach the OM server task_id="ingest", dag=dag, ) ``` {% note %} Make sure to tune out the DAG configurations (`schedule_interval`, `start_date`, etc.) as your use case requires. {% /note %} {% note %} If you encounter issues such as missing task instances or Airflow failing to locate a deployed DAG (e.g., `Dag '' could not be found`), this may be due to a **timezone mismatch** in your Airflow configuration. To resolve this, set the following in your `airflow.cfg`: ```ini default_timezone = system ``` This ensures that Airflow uses the system timezone, which is particularly important when OpenMetadata and Airflow are running on the same server. {% /note %} ### Key Notes - **Image Version**: Ensure the Docker image version matches your OpenMetadata server version (e.g., `openmetadata/ingestion-base:0.13.2`). - **Pipeline Types**: Set the `pipelineType` to `metadata`, `usage`, `lineage`, `profiler`, or other supported values. - **No Installation Required**: The `DockerOperator` eliminates the need to install dependencies directly on the Airflow host. Another important point here is making sure that the Airflow will be able to run Docker commands to create the task. As our example was done with Airflow in Docker Compose, that meant setting `docker_url="unix://var/run/docker.sock"`. The final important elements here are: - `command="python main.py"`: This does not need to be modified, as we are shipping the `main.py` script in the image, used to trigger the workflow. - `environment={"config": config, "pipelineType": "metadata"}`: Again, in most cases you will just need to update the `config` string to point to the right connector. Other supported values of `pipelineType` are `usage`, `lineage`, `profiler`, `dataInsight`, `elasticSearchReindex`, `dbt`, `application` or `TestSuite`. Pass the required flag depending on the type of workflow you want to execute. Make sure that the YAML config reflects what ingredients are required for your Workflow. ## Using the Python Virtualenv Operator ### Prerequisites As stated in Airflow's [docs](https://airflow.apache.org/docs/apache-airflow/stable/howto/operator/python.html#pythonvirtualenvoperator), install the `virtualenv` package on the Airflow host.If using a different Python version in the virtual environment (e.g., Python 3.9 while Airflow uses 3.7), install additional packages such as: ``` gcc python3.9-dev python3.9-distutils ``` ### Example DAG ```python from datetime import timedelta from airflow import DAG try: from airflow.operators.python import PythonVirtualenvOperator except ModuleNotFoundError: from airflow.operators.python_operator import PythonVirtualenvOperator from airflow.utils.dates import days_ago default_args = { "owner": "user_name", "email": ["username@org.com"], "email_on_failure": False, "retries": 3, "retry_delay": timedelta(seconds=10), "execution_timeout": timedelta(minutes=60), } def metadata_ingestion_workflow(): from metadata.workflow.metadata import MetadataWorkflow import yaml config = """ source: type: postgres serviceName: local_postgres serviceConnection: config: type: Postgres username: openmetadata_user authType: password: openmetadata_password hostPort: localhost:5432 database: pagila sourceConfig: config: type: DatabaseMetadata sink: type: metadata-rest config: {} workflowConfig: # loggerLevel: INFO # DEBUG, INFO, WARN or ERROR openMetadataServerConfig: hostPort: http://localhost:8585/api authProvider: openmetadata securityConfig: jwtToken: "eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5 """ workflow_config = yaml.safe_load(config) workflow = MetadataWorkflow.create(workflow_config) workflow.execute() workflow.raise_from_status() workflow.print_status() workflow.stop() with DAG( "ingestion_dag", default_args=default_args, description="An example DAG which runs a OpenMetadata ingestion workflow", start_date=days_ago(1), is_paused_upon_creation=True, catchup=False, ) as dag: ingest_task = PythonVirtualenvOperator( task_id="ingest_using_recipe", requirements=[ 'openmetadata-ingestion[mysql]~=1.3.0', # Specify any additional Python package dependencies ], system_site_packages=False, # Set to True if you want to include system site-packages in the virtual environment python_version="3.9", # Remove if necessary python_callable=metadata_ingestion_workflow ) ``` ### Key Notes **Function Rules**: - Use a `def` function (not part of a class). - All imports must occur inside the function. - Avoid referencing variables outside the function's scope. {% partial file="/v1.8/deployment/run-connectors-class.md" /%}