--- title: Run the MLflow Connector Externally slug: /connectors/ml-model/mlflow/yaml --- {% connectorDetailsHeader name="MLflow" stage="PROD" platform="OpenMetadata" availableFeatures=["ML Features", "Hyperparameters", "ML Store"] unavailableFeatures=[] / %} In this section, we provide guides and references to use the MLflow connector. Configure and schedule MLflow metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) {% partial file="/v1.6/connectors/external-ingestion-deployment.md" /%} ## Requirements ### Python Requirements {% partial file="/v1.6/connectors/python-requirements.md" /%} To run the MLflow ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[mlflow]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/mlmodel/mlflowConnection.json) you can find the structure to create a connection to MLflow. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/mlmodelServiceMetadataPipeline.json) ### 1. Define the YAML Config This is a sample config for MLflow: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **trackingUri**: MLflow Experiment tracking URI. E.g., http://localhost:5000 {% /codeInfo %} {% codeInfo srNumber=2 %} **registryUri**: MLflow Model registry backend. E.g., mysql+pymysql://mlflow:password@localhost:3307/experiments {% /codeInfo %} {% partial file="/v1.6/connectors/yaml/ml-model/source-config-def.md" /%} {% partial file="/v1.6/connectors/yaml/ingestion-sink-def.md" /%} {% partial file="/v1.6/connectors/yaml/workflow-config-def.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml {% isCodeBlock=true %} source: type: mlflow serviceName: local_mlflow serviceConnection: config: type: Mlflow ``` ```yaml {% srNumber=1 %} trackingUri: http://localhost:5000 ``` ```yaml {% srNumber=2 %} registryUri: mysql+pymysql://mlflow:password@localhost:3307/experiments ``` {% partial file="/v1.6/connectors/yaml/ml-model/source-config.md" /%} {% partial file="/v1.6/connectors/yaml/ingestion-sink.md" /%} {% partial file="/v1.6/connectors/yaml/workflow-config.md" /%} {% /codeBlock %} {% /codePreview %} {% partial file="/v1.6/connectors/yaml/ingestion-cli.md" /%}