--- title: External Profiler Workflow slug: /how-to-guides/data-quality-observability/profiler/external-workflow --- # External Profiler Workflow {% note %} Note that this requires OpenMetadata 1.2.1 or higher. {% /note %} Consider a use case where you have a large database source with multiple databases and schemas which are maintained by different teams within your organization. You have created multiple database services within OpenMetadata depending on your use case by applying various filters on this large source. Now, instead of running a profiler pipeline for each service, you want to run a **single workflow profiler for the entire source**, irrespective of the OpenMetadata service which an asset would belong to. This document will guide you on how to achieve this. {% note %} Note that running a single profiler workflow is only supported if you run the workflow **externally**, not from OpenMetadata. {% /note %} {% partial file="/v1.6/connectors/external-ingestion-deployment.md" /%} ### Requirements In order to run the external profiler with external sample data you will need to install the following packages: ```commandline pip install "openmetadata-ingestion[,datalake,trino]~=1.2.1" ``` Where `` is the name of the connector that you want to run against. Each specific installation command will be shared on its documentation [page](/connectors/database). For example, to run against Athena, we need to install: ```commandline pip install "openmetadata-ingestion[athena,datalake,trino]~=1.2.1" ``` - The `athena` plugin will bring all the requirements to connect to the Athena Service - The `datalake` plugin helps us connect to S3 to manage the [sample data](/how-to-guides/data-quality-observability/profiler/external-sample-data) - The `trino` plugin will only be needed temporarily ## 1. Define the YAML Config You will need to prepare a yaml file for the data profiler depending on the database source. You can get details of how to define a yaml file for data profiler for each connector [here](/connectors/database). For example, consider if the data source was snowflake, then the yaml file would have looked like as follows. ```snowflake_external_profiler.yaml source: type: snowflake serviceConnection: config: type: Snowflake username: my_username password: my_password account: snow-account-name warehouse: COMPUTE_WH sourceConfig: config: type: Profiler generateSampleData: true computeMetrics: true # schemaFilterPattern: # includes: # # - .*mydatabase.* # - .*default.* # tableFilterPattern: # includes: # # - ^cloudfront_logs11$ # - ^map_table$ # # - .*om_glue_test.* processor: type: "orm-profiler" config: tableConfig: - fullyQualifiedName: local_snowflake.mydatabase.mydschema.mytable sampleDataCount: 50 # schemaConfig: # - fullyQualifiedName: demo_snowflake.new_database.new_dschema # sampleDataCount: 50 # profileSample: 1 # profileSampleType: ROWS # sampleDataStorageConfig: # config: # bucketName: awsdatalake-testing # prefix: data/sales/demo1 # overwriteData: false # storageConfig: # awsRegion: us-east-2 # awsAccessKeyId: # awsSecretAccessKey: # awsSessionToken: # assumeRoleArn: # assumeRoleSessionName: # assumeRoleSourceIdentity: # databaseConfig: # - fullyQualifiedName: snowflake_prod.prod_db # sampleDataCount: 50 # profileSample: 1 # profileSampleType: ROWS # sampleDataStorageConfig: # config: # bucketName: awsdatalake-testing # prefix: data/sales/demo1 # overwriteData: false # storageConfig: # awsRegion: us-east-2 # awsAccessKeyId: # awsSecretAccessKey: # awsSessionToken: # assumeRoleArn: # assumeRoleSessionName: # assumeRoleSourceIdentity: sink: type: metadata-rest config: {} workflowConfig: loggerLevel: DEBUG openMetadataServerConfig: hostPort: http://localhost:8585/api authProvider: openmetadata securityConfig: jwtToken: "your-jwt-token" ``` {% note %} Note that we do **NOT pass the Service Name** in this yaml file, unlike your typical profiler workflow {% /note %} ## 2. Run the Workflow ### Run the Workflow with the CLI One option to running the workflow externally is by leveraging the `metadata` CLI. After saving the YAML config, we will run the command: ``` metadata profile -c ``` ### Run the Workflow from Python using the SDK If you'd rather have a Python script taking care of the execution, you can use: ```python from metadata.workflow.profiler import ProfilerWorkflow from metadata.workflow.workflow_output_handler import print_status # Specify your YAML configuration CONFIG = """ source: ... workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: openmetadata securityConfig: jwtToken: ... """ def run(): workflow_config = yaml.safe_load(CONFIG) workflow = ProfilerWorkflow.create(workflow_config) workflow.execute() workflow.raise_from_status() print_status(workflow) workflow.stop() if __name__ == "__main__": run() ```