--- title: Run the Databricks Pipeline Connector Externally slug: /connectors/pipeline/databricks-pipeline/yaml --- {% connectorDetailsHeader name="Databricks" stage="PROD" platform="OpenMetadata" availableFeatures=["Pipelines", "Pipeline Status", "Usage"] unavailableFeatures=["Owners", "Tags", "Lineage"] / %} In this section, we provide guides and references to use the Databricks Pipeline connector. Configure and schedule Databricks Pipeline metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) {% partial file="/v1.7/connectors/external-ingestion-deployment.md" /%} ## Requirements ### Python Requirements {% partial file="/v1.7/connectors/python-requirements.md" /%} To run the Databricks Pipeline ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[databricks]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/pipeline/databricksPipelineConnection.json) you can find the structure to create a connection to Databricks Pipeline. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config This is a sample config for Databricks Pipeline: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **Host and Port**: Enter the fully qualified hostname and port number for your Databricks Pipeline deployment in the Host and Port field. {% /codeInfo %} {% codeInfo srNumber=2 %} **Token**: Generated Token to connect to Databricks Pipeline. {% /codeInfo %} {% codeInfo srNumber=3 %} **Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Databricks during the connection. These details must be added as Key-Value pairs. - In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"` **HTTP Path**: Databricks Pipeline compute resources URL. {% /codeInfo %} {% partial file="/v1.7/connectors/yaml/pipeline/source-config-def.md" /%} {% partial file="/v1.7/connectors/yaml/ingestion-sink-def.md" /%} {% partial file="/v1.7/connectors/yaml/workflow-config-def.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml {% isCodeBlock=true %} source: type: databrickspipeline serviceName: local_databricks_pipeline serviceConnection: config: type: DatabricksPipeline ``` ```yaml {% srNumber=1 %} hostPort: localhost:443 ``` ```yaml {% srNumber=2 %} token: ``` ```yaml {% srNumber=3 %} connectionArguments: http_path: ``` {% partial file="/v1.7/connectors/yaml/pipeline/source-config.md" /%} {% partial file="/v1.7/connectors/yaml/ingestion-sink.md" /%} {% partial file="/v1.7/connectors/yaml/workflow-config.md" /%} {% /codeBlock %} {% /codePreview %} {% partial file="/v1.7/connectors/yaml/ingestion-cli.md" /%}