--- title: Azure AKS Deployment slug: /deployment/kubernetes/aks collate: false --- # Openmetadata Deployment on Azure Kubernetes Service Cluster Openmetadata can be deployed on Azure Kubernetes Service. It however requires certain cloud specific configurations with regards to setting up storage accounts for Airflow which is one of its dependencies. ## Prerequisites ### Azure Services for Database and Search Engine as Elastic Cloud It is recommended to use [Azure SQL](https://azure.microsoft.com/en-in/products/azure-sql/database) and [Elastic Cloud on Azure](https://www.elastic.co/partners/microsoft-azure) for Production Deployments. We support - Azure SQL (MySQL) engine version 8 or higher - Azure SQL (PostgreSQL) engine version 12 or higher - Elastic Cloud (ElasticSearch version 8.11.4) Once you have the Azure SQL and Elastic Cloud on Azure configured, you can update the environment variables below for OpenMetadata kubernetes deployments to connect with Database and ElasticSearch. ```yaml # openmetadata-values.prod.yaml ... openmetadata: config: elasticsearch: host: searchType: elasticsearch port: 443 scheme: https connectionTimeoutSecs: 5 socketTimeoutSecs: 60 keepAliveTimeoutSecs: 600 batchSize: 10 auth: enabled: true username: password: secretRef: elasticsearch-secrets secretKey: openmetadata-elasticsearch-password database: host: port: 3306 driverClass: com.mysql.cj.jdbc.Driver dbScheme: mysql dbUseSSL: true databaseName: auth: username: password: secretRef: mysql-secrets secretKey: openmetadata-mysql-password ... ``` We recommend - - Azure SQL to be Multi Zone Available and Production Workload Environment - Elastic Cloud Environment with multiple zones and minimum 2 nodes Make sure to create database and elastic cloud credentials as Kubernetes Secrets mentioned [here](/quick-start/local-kubernetes-deployment#2.-create-kubernetes-secrets-required-for-helm-charts). Also, disable MySQL and ElasticSearch from OpenMetadata Dependencies Helm Charts as mentioned in the FAQs [here](#how-to-disable-mysql-and-elasticsearch-from-openmetadata-dependencies-helm-charts). ### Step 1 - Create a AKS cluster If you are deploying on a new cluster set the `EnableAzureDiskFileCSIDriver=true` to enable container storage interface storage drivers. ```azure-cli az aks create --resource-group MyResourceGroup \ --name MyAKSClusterName \ --nodepool-name agentpool \ --outbound-type loadbalancer \ --location YourPreferredLocation \ --generate-ssh-keys \ --enable-addons monitoring \ EnableAzureDiskFileCSIDriver=true \ ``` For existing cluster it is important to enable the CSI storage drivers ```azure-cli az aks update -n MyAKSCluster -g MyResourceGroup --enable-disk-driver --enable-file-driver ``` ### Step 2 - Create a Namespace (optional) ```azure-cli kubectl create namespace openmetadata ``` ### Step 3 - Create Persistent Volumes OpenMetadata helm chart depends on Airflow and Airflow expects a persistent disk that support ReadWriteMany (the volume can be mounted as read-write by many nodes). The Azure CSI storage drivers we enabled earlier support the provisioning of the disks in ReadWriteMany mode,. ```yaml # logs_dags_pvc.yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: name: openmetadata-dependencies-dags-pvc namespace: openmetadata spec: accessModes: - ReadWriteMany resources: requests: storage: 10Gi storageClassName: azurefile-csi --- kind: PersistentVolumeClaim apiVersion: v1 metadata: name: openmetadata-dependencies-logs-pvc namespace: openmetadata spec: accessModes: - ReadWriteMany resources: requests: storage: 5Gi storageClassName: azurefile-csi ``` Create the volume claims by applying the manifest. ```azure-cli kubectl apply -f logs_dags_pvc.yaml ``` ### Step 4 - Change owner and update permission for persistent volumes Airflow pods run as non-root user and lack write access to our persistent volumes. To fix this we create a job permissions_pod.yaml that runs a pod that mounts volumnes into the persistent volume claim and updates the owner of the mounted folders /airflow-dags and /airflow-logs to user id 5000, which is the default linux user id of Airflow pods. ```yaml # permissions_pod.yaml apiVersion: batch/v1 kind: Job metadata: labels: run: my-permission-pod name: my-permission-pod namespace: openmetadata spec: template: spec: containers: - image: busybox name: my-permission-pod volumeMounts: - name: airflow-dags mountPath: /airflow-dags - name: airflow-logs mountPath: /airflow-logs command: ["/bin/sh", "-c", "chown -R 50000 /airflow-dags /airflow-logs", "chmod -R a+rwx /airflow-dags"] restartPolicy: Never volumes: - name: airflow-logs persistentVolumeClaim: claimName: openmetadata-dependencies-logs-pvc - name: airflow-dags persistentVolumeClaim: claimName: openmetadata-dependencies-dags-pvc ``` Start the job by applying the manifest in permissions_pod.yaml. ```azure-cli kubectl apply -f permissions_pod.yaml ``` ### Step 5 - Add the Helm Openmetadata repo and set-up secrets #### Add Helm Repo ``` azure-cli helm repo add open-metadata https://helm.open-metadata.org/ ``` #### Create secrets It is recommeded to use external database and search for production deplyoments. The following implementation uses external postgresql DB from Azure Database. Any of the popular databases can be used. The default implementation uses mysql. ```azure-cli kubectl create secret generic airflow-secrets \ --namespace openmetadata \ --from-literal=openmetadata-airflow-password= ``` For production deployments connecting external postgresql database provide external database connection details by settings up appropriate secrets as below to use in manifests. ```azure-cli kubectl create secret generic postgresql-secret \ --namespace openmetadata \ --from-literal=postgresql-password= ``` ### Step 6 - Install Openmetadata dependencies The values-dependencies-yaml is used to overwride default values in the official helm chart and must be configured for customizing for use cases. Uncomment the externalDatabase section with meaningful values to connect to external database for production deployments. We set sensitive information like host address, DB name and DB username through the CLI. ```yaml # values-dependencies.yaml airflow: airflow: extraVolumeMounts: - mountPath: /airflow-logs name: aks-airflow-logs - mountPath: /airflow-dags/dags name: aks-airflow-dags extraVolumes: - name: aks-airflow-logs persistentVolumeClaim: claimName: openmetadata-dependencies-logs-pvc - name: aks-airflow-dags persistentVolumeClaim: claimName: openmetadata-dependencies-dags-pvc config: AIRFLOW__OPENMETADATA_AIRFLOW_APIS__DAG_GENERATED_CONFIGS: "/airflow-dags/dags" dags: path: /airflow-dags/dags persistence: enabled: false logs: path: /airflow-logs persistence: enabled: false externalDatabase: type: postgres # default mysql host: Host_db_address database: Airflow_metastore_dbname user: db_userName port: 5432 dbUseSSL: true passwordSecret: postgresql-secret passwordSecretKey: postgresql-password ``` We overwrite some of the default values in the official openmetadata-dependencies helm chart with the values-dependencies.yaml to include an external postgresql db. And it's important to turn the mysql.enable flag to false if you are not using the default mysql db. This can be done both through the yaml file or as shown by setting variable values in the helm install command. For more information on airflow helm chart values, please refer to [airflow-helm](https://artifacthub.io/packages/helm/airflow-helm/airflow/8.5.3) ```azure-cli helm install openmetadata-dependencies open-metadata/openmetadata-dependencies \ --values values-dependencies.yaml \ --namespace openmetadata \ --set mysql.enabled=false ``` It takes a few minutes for all the pods to be correctly set-up and running. ```azure-cli kubectl get pods -n openmetadata ``` ``` NAME READY STATUS RESTARTS AGE openmetadata-dependencies-db-migrations-69fcf8c9d9-ctd2f 1/1 Running 0 4m51s openmetadata-dependencies-pgbouncer-d9476f85-bwht9 1/1 Running 0 4m54s openmetadata-dependencies-scheduler-5f785954cb-792ls 1/1 Running 0 4m54s openmetadata-dependencies-sync-users-b58ccc589-ncb2d 1/1 Running 0 4m47s openmetadata-dependencies-triggerer-684b8bb998-mbzvs 1/1 Running 0 4m53s openmetadata-dependencies-web-9f6b4ff-5hfqj 1/1 Running 0 4m53s opensearch-0 1/1 Running 0 42m ``` ### Step 7 - Install Openmetadata Finally install Openmetadata optionally customizing the values provided in the official chart [here](https://github.com/open-metadata/openmetadata-helm-charts/blob/main/charts/openmetadata/values.yaml) using the values.yaml file. ```yaml # values.yaml global: pipelineServiceClientConfig: apiEndpoint: http://openmetadata-dependencies-web..svc.cluster.local:8080 metadataApiEndpoint: http://openmetadata..svc.cluster.local:8585/api openmetadata: config: database: host: postgresql port: 5432 driverClass: org.postgresql.Driver dbScheme: postgresql databaseName: openmetadata_db auth: username: password: secretRef: postgresql-secret # referring to secret set in step 5 above secretKey: postgresql-password image: tag: ``` ```azure-cli helm install openmetadata open-metadata/openmetadata \ --values values.yaml \ --namespace openmetadata ``` Give it again a few seconds for the pod to get ready. And when its ready, the service can be accessed by forwarding port 8585 of the cluster ip to you local host port. ```azure-cli kubectl port-forward service/openmetadata 8585:8585 -n openmetadata ``` ## Troubleshooting Airflow ### JSONDecodeError: Unterminated string starting If you are using Airflow with Azure Blob Storage as `PersistentVolume` as explained in [Storage class using blobfuse](https://learn.microsoft.com/en-us/azure/aks/azure-csi-blob-storage-provision?tabs=mount-nfs%2Csecret), you may encounter the following error after a few days: ```bash {dagbag.py:346} ERROR - Failed to import: /airflow-dags/dags/...py json.decoder.JSONDecodeError: Unterminated string starting at: line 1 column 3552 ``` Moreover, the Executor pods would actually be using old files. This behaviour is caused by the recommended config by the mentioned documentation: ```yaml - -o allow_other - --file-cache-timeout-in-seconds=120 - --use-attr-cache=true - --cancel-list-on-mount-seconds=10 # prevent billing charges on mounting - -o attr_timeout=120 - -o entry_timeout=120 - -o negative_timeout=120 - --log-level=LOG_WARNING # LOG_WARNING, LOG_INFO, LOG_DEBUG - --cache-size-mb=1000 # Default will be 80% of available memory, eviction will happen beyond that. ``` **Disabling the cache** will help here. In this case it won't have any negative impact, since the `.py` and `.json` files are small enough and not heavily used. The same configuration without cache: ```yaml - --o direct_io - --file-cache-timeout-in-seconds=0 - --use-attr-cache=false - --cancel-list-on-mount-seconds=10 - --o attr_timeout=0 - --o entry_timeout=0 - --o negative_timeout=0 - --log-level=LOG_WARNING - --cache-size-mb=0 ``` You can find more information about this error [here](https://github.com/open-metadata/OpenMetadata/issues/15321), and similar discussions [here](https://github.com/Azure/azure-storage-fuse/issues/1171) and [here](https://github.com/Azure/azure-storage-fuse/issues/1139). # FAQs {% partial file="/v1.7/deployment/faqs.md" /%}