--- title: Run the GCS Datalake Connector Externally slug: /connectors/database/gcs-datalake/yaml --- {% connectorDetailsHeader name="GCS Datalake" stage="PROD" platform="OpenMetadata" availableFeatures=["Metadata", "Data Profiler", "Data Quality", "Sample Data"] unavailableFeatures=["Query Usage", "Lineage", "Column-level Lineage", "Owners", "dbt", "Tags", "Stored Procedures"] / %} In this section, we provide guides and references to use the GCS Datalake connector. Configure and schedule GCS Datalake metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) - [dbt Integration](#dbt-integration) {% partial file="/v1.8/connectors/external-ingestion-deployment.md" /%} ## Requirements **Note:** GCS Datalake connector supports extracting metadata from file types `JSON`, `CSV`, `TSV` & `Parquet`. ### Python Requirements {% partial file="/v1.8/connectors/python-requirements.md" /%} If running OpenMetadata version greater than 0.13, you will need to install the Datalake ingestion for GCS #### GCS installation ```bash pip3 install "openmetadata-ingestion[datalake-gcp]" ``` #### If version <0.13 You will be installing the requirements for GCS ```bash pip3 install "openmetadata-ingestion[datalake]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Datalake. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following JSON Schema. ## 1. Define the YAML Config ### This is a sample config for Datalake using GCS: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% partial file="/v1.8/connectors/yaml/common/gcp-config-def.md" /%} {% codeInfo srNumber=5 %} * **bucketName**: name of the bucket in GCS * **Prefix**: prefix in gcp bucket {% /codeInfo %} {% partial file="/v1.8/connectors/yaml/database/source-config-def.md" /%} {% partial file="/v1.8/connectors/yaml/ingestion-sink-def.md" /%} {% partial file="/v1.8/connectors/yaml/workflow-config-def.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml {% isCodeBlock=true %} source: type: datalake serviceName: local_datalake serviceConnection: config: type: Datalake configSource: securityConfig: gcpConfig: ``` {% partial file="/v1.8/connectors/yaml/common/gcp-config.md" /%} ```yaml {% srNumber=5 %} bucketName: bucket name prefix: prefix ``` {% partial file="/v1.8/connectors/yaml/database/source-config.md" /%} {% partial file="/v1.8/connectors/yaml/ingestion-sink.md" /%} {% partial file="/v1.8/connectors/yaml/workflow-config.md" /%} {% /codeBlock %} {% /codePreview %} {% partial file="/v1.8/connectors/yaml/ingestion-cli.md" /%} ## dbt Integration You can learn more about how to ingest dbt models' definitions and their lineage [here](/connectors/ingestion/workflows/dbt).