--- title: Run the VertexAI Connector Externally slug: /connectors/ml-model/vertexai/yaml collate: true --- {% connectorDetailsHeader name="VertexAI" stage="BETA" platform="Collate" availableFeatures=["ML Store", "ML Features", "Hyper parameters"] unavailableFeatures=[] / %} In this section, we provide guides and references to use the VertexAI connector. Configure and schedule VertexAI metadata from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) {% partial file="/v1.8/connectors/external-ingestion-deployment.md" /%} ## Requirements ### Python Requirements {% partial file="/v1.8/connectors/python-requirements.md" /%} To run the VertexAI ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[vertexai]" ``` ### GCP Permissions To execute metadata extraction workflow successfully the user or the service account should have enough access to fetch required data. Following table describes the minimum required permissions {% multiTablesWrapper %} | # | GCP Permission | Required For | | :--- | :---------------------------- | :---------------------- | | 1 | aiplatform.models.get | Metadata Ingestion | | 2 | aiplatform.models.list | Metadata Ingestion | {% /multiTablesWrapper %} ## Metadata Ingestion ### 1. Define the YAML Config This is a sample config for VertexAI: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **credentials**: You can authenticate with your vertexai instance using either `GCP Credentials Path` where you can specify the file path of the service account key or you can pass the values directly by choosing the `GCP Credentials Values` from the service account key file. You can checkout [this](https://cloud.google.com/iam/docs/keys-create-delete#iam-service-account-keys-create-console) documentation on how to create the service account keys and download it. **gcpConfig:** **1.** Passing the raw credential values provided by VertexAI. This requires us to provide the following information, all provided by VertexAI: {% /codeInfo %} {% partial file="/v1.8/connectors/yaml/common/gcp-config.md" /%} {% codeInfo srNumber=4 %} **2.** Passing a local file path that contains the credentials: - **gcpCredentialsPath** **Location**: Location refers to the geographical region where your resources, such as datasets, models, and endpoints, are physically hosted.(e.g. `us-central1`, `europe-west4`) {% /codeInfo %} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml {% isCodeBlock=true %} source: type: vertexai serviceName: localvx serviceConnection: config: type: VertexAI ``` ```yaml {% srNumber=1 %} credentials: gcpConfig: ``` {% partial file="/v1.8/connectors/yaml/common/gcp-config.md" /%} ```yaml {% srNumber=4 %} location: PROJECT LOCATION/REGION (us-central1) ``` ```yaml {% srNumber=2 %} # connectionOptions: # key: value ``` ```yaml {% srNumber=3 %} # connectionArguments: # key: value ``` {% partial file="/v1.8/connectors/yaml/database/source-config.md" /%} {% partial file="/v1.8/connectors/yaml/ingestion-sink.md" /%} {% partial file="/v1.8/connectors/yaml/workflow-config.md" /%} {% /codeBlock %} {% /codePreview %} {% partial file="/v1.8/connectors/yaml/ingestion-cli.md" /%}