--- title: Run the Redpanda Connector Externally slug: /connectors/messaging/redpanda/yaml --- # Run the Redpanda Connector Externally In this section, we provide guides and references to use the Redpanda connector. Configure and schedule Redpanda metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) {% partial file="/v1.1/connectors/external-ingestion-deployment.md" /%} ## Requirements {%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%} ### Python Requirements To run the Redpanda ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[redpanda]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/messaging/redpandaConnection.json) you can find the structure to create a connection to Redpanda. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config This is a sample config for Redpanda: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **bootstrapServers**: List of brokers as comma separated values of broker `host` or `host:port`. Example: `host1:9092,host2:9092` {% /codeInfo %} {% codeInfo srNumber=2 %} **schemaRegistryURL**: URL of the Schema Registry used to ingest the schemas of the topics. **NOTE**: For now, the schema will be the last version found for the schema name `{topic-name}-value`. An [issue](https://github.com/open-metadata/OpenMetadata/issues/10399) to improve how it currently works has been opened. {% /codeInfo %} {% codeInfo srNumber=3 %} **saslUsername**: SASL username for use with the PLAIN and SASL-SCRAM mechanisms. {% /codeInfo %} {% codeInfo srNumber=4 %} **saslPassword**: SASL password for use with the PLAIN and SASL-SCRAM mechanisms. {% /codeInfo %} {% codeInfo srNumber=5 %} **saslMechanism**: SASL mechanism to use for authentication. Supported: _GSSAPI, PLAIN, SCRAM-SHA-256, SCRAM-SHA-512, OAUTHBEARER_. **NOTE**: Despite the name only one mechanism must be configured. {% /codeInfo %} {% codeInfo srNumber=6 %} **basicAuthUserInfo**: Schema Registry Client HTTP credentials in the form of `username:password`. By default, user info is extracted from the URL if present. {% /codeInfo %} {% codeInfo srNumber=7 %} **consumerConfig**: The accepted additional values for the consumer configuration can be found in the following [link](https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md). {% /codeInfo %} {% codeInfo srNumber=8 %} **schemaRegistryConfig**: The accepted additional values for the Schema Registry configuration can be found in the following [link](https://docs.confluent.io/5.5.1/clients/confluent-kafka-python/index.html#confluent_kafka.schema_registry.SchemaRegistryClient). **Note:** To ingest the topic schema, `schemaRegistryURL` must be passed. {% /codeInfo %} #### Source Configuration - Source Config {% codeInfo srNumber=9 %} The sourceConfig is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/messagingServiceMetadataPipeline.json): **generateSampleData:** Option to turn on/off generating sample data during metadata extraction. **topicFilterPattern:** Note that the `topicFilterPattern` supports regex as include or exclude. {% /codeInfo %} #### Sink Configuration {% codeInfo srNumber=10 %} To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`. {% /codeInfo %} {% partial file="/v1.1/connectors/workflow-config.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml source: type: redpanda serviceName: local_redpanda serviceConnection: config: type: Redpanda ``` ```yaml {% srNumber=1 %} bootstrapServers: localhost:9092 ``` ```yaml {% srNumber=2 %} schemaRegistryURL: http://localhost:8081 # Needs to be a URI ``` ```yaml {% srNumber=3 %} saslUsername: username ``` ```yaml {% srNumber=4 %} saslPassword: password ``` ```yaml {% srNumber=5 %} saslMechanism: PLAIN ``` ```yaml {% srNumber=6 %} basicAuthUserInfo: username:password ``` ```yaml {% srNumber=7 %} consumerConfig: {} ``` ```yaml {% srNumber=8 %} schemaRegistryConfig: {} ``` ```yaml {% srNumber=9 %} sourceConfig: config: type: MessagingMetadata topicFilterPattern: excludes: - _confluent.* # includes: # - topic1 # generateSampleData: true ``` ```yaml {% srNumber=10 %} sink: type: metadata-rest config: {} ``` {% partial file="/v1.1/connectors/workflow-config-yaml.md" /%} {% /codeBlock %} {% /codePreview %} ### 2. Run with the CLI First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run: ```bash metadata ingest -c ``` Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.