--- title: Run DeltaLake Connector using the CLI slug: /connectors/database/deltalake/cli --- # Run Deltalake using the metadata CLI In this section, we provide guides and references to use the Deltalake connector. Configure and schedule Deltalake metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) - [DBT Integration](#dbt-integration) ## Requirements To deploy OpenMetadata, check the Deployment guides. To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment. ### Python Requirements To run the Deltalake ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[deltalake]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/deltaLakeConnection.json) you can find the structure to create a connection to Deltalake. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config This is a sample config for Deltalake: ```yaml source: type: deltalake serviceName: "" serviceConnection: config: type: DeltaLake metastoreConnection: # Pick only of the three metastoreHostPort: "" # metastoreDb: jdbc:mysql://localhost:3306/demo_hive # metastoreFilePath: "/metastore_db" appName: MyApp sourceConfig: config: markDeletedTables: true includeTables: true includeViews: true # includeTags: true # databaseFilterPattern: # includes: # - database1 # - database2 # excludes: # - database3 # - database4 # schemaFilterPattern: # includes: # - schema1 # - schema2 # excludes: # - schema3 # - schema4 # tableFilterPattern: # includes: # - table1 # - table2 # excludes: # - table3 # - table4 # For DBT, choose one of Cloud, Local, HTTP, S3 or GCS configurations # dbtConfigSource: # # For cloud # dbtCloudAuthToken: token # dbtCloudAccountId: ID # # For Local # dbtCatalogFilePath: path-to-catalog.json # dbtManifestFilePath: path-to-manifest.json # # For HTTP # dbtCatalogHttpPath: http://path-to-catalog.json # dbtManifestHttpPath: http://path-to-manifest.json # # For S3 # dbtSecurityConfig: # These are modeled after all AWS credentials # awsAccessKeyId: KEY # awsSecretAccessKey: SECRET # awsRegion: us-east-2 # dbtPrefixConfig: # dbtBucketName: bucket # dbtObjectPrefix: "dbt/" # # For GCS # dbtSecurityConfig: # These are modeled after all GCS credentials # type: My Type # projectId: project ID # privateKeyId: us-east-2 # privateKey: | # -----BEGIN PRIVATE KEY----- # Super secret key # -----END PRIVATE KEY----- # clientEmail: client@mail.com # clientId: 1234 # authUri: https://accounts.google.com/o/oauth2/auth (default) # tokenUri: https://oauth2.googleapis.com/token (default) # authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs (default) # clientX509CertUrl: https://cert.url (URI) # dbtPrefixConfig: # dbtBucketName: bucket # dbtObjectPrefix: "dbt/" sink: type: metadata-rest config: {} workflowConfig: # loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR openMetadataServerConfig: hostPort: "" authProvider: "" ``` #### Source Configuration - Service Connection - **Metastore Host Port**: Enter the Host & Port of Hive Metastore Service to configure the Spark Session. Either of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required. - **Metastore File Path**: Enter the file path to local Metastore in case Spark cluster is running locally. Either of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required. - **Metastore DB**: The JDBC connection to the underlying Hive metastore DB. Either of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required. - **appName (Optional)**: Enter the app name of spark session. - **Connection Arguments (Optional)**: Key-Value pairs that will be used to pass extra `config` elements to the Spark Session builder. We are internally running with `pyspark` 3.X and `delta-lake` 2.0.0. This means that we need to consider Spark configuration options for 3.X. ##### Metastore Host Port When connecting to an External Metastore passing the parameter `Metastore Host Port`, we will be preparing a Spark Session with the configuration ``` .config("hive.metastore.uris", "thrift://{connection.metastoreHostPort}") ``` Then, we will be using the `catalog` functions from the Spark Session to pick up the metadata exposed by the Hive Metastore. ##### Metastore File Path If instead we use a local file path that contains the metastore information (e.g., for local testing with the default `metastore_db` directory), we will set ``` .config("spark.driver.extraJavaOptions", "-Dderby.system.home={connection.metastoreFilePath}") ``` To update the `Derby` information. More information about this in a great [SO thread](https://stackoverflow.com/questions/38377188/how-to-get-rid-of-derby-log-metastore-db-from-spark-shell). - You can find all supported configurations [here](https://spark.apache.org/docs/latest/configuration.html) - If you need further information regarding the Hive metastore, you can find it [here](https://spark.apache.org/docs/3.0.0-preview/sql-data-sources-hive-tables.html), and in The Internals of Spark SQL [book](https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql-hive-metastore.html). #### Source Configuration - Source Config The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json): - `markDeletedTables`: To flag tables as soft-deleted if they are not present anymore in the source system. - `includeTables`: true or false, to ingest table data. Default is true. - `includeViews`: true or false, to ingest views definitions. - `databaseFilterPattern`, `schemaFilterPattern`, `tableFilternPattern`: Note that the they support regex as include or exclude. E.g., ```yaml tableFilterPattern: includes: - users - type_test ``` #### Sink Configuration To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`. #### Workflow Configuration The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation. For a simple, local installation using our docker containers, this looks like: ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: openmetadata securityConfig: jwtToken: '{bot_jwt_token}' ``` We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client). You can find the different implementation of the ingestion below. ### Openmetadata JWT Auth ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: openmetadata securityConfig: jwtToken: '{bot_jwt_token}' ``` ### Auth0 SSO ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: auth0 securityConfig: clientId: '{your_client_id}' secretKey: '{your_client_secret}' domain: '{your_domain}' ``` ### Azure SSO ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: azure securityConfig: clientSecret: '{your_client_secret}' authority: '{your_authority_url}' clientId: '{your_client_id}' scopes: - your_scopes ``` ### Custom OIDC SSO ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: custom-oidc securityConfig: clientId: '{your_client_id}' secretKey: '{your_client_secret}' domain: '{your_domain}' ``` ### Google SSO ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: google securityConfig: secretKey: '{path-to-json-creds}' ``` ### Okta SSO ```yaml workflowConfig: openMetadataServerConfig: hostPort: http://localhost:8585/api authProvider: okta securityConfig: clientId: "{CLIENT_ID - SPA APP}" orgURL: "{ISSUER_URL}/v1/token" privateKey: "{public/private keypair}" email: "{email}" scopes: - token ``` ### Amazon Cognito SSO The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens) ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: auth0 securityConfig: clientId: '{your_client_id}' secretKey: '{your_client_secret}' domain: '{your_domain}' ``` ### OneLogin SSO Which uses Custom OIDC for the ingestion ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: custom-oidc securityConfig: clientId: '{your_client_id}' secretKey: '{your_client_secret}' domain: '{your_domain}' ``` ### KeyCloak SSO Which uses Custom OIDC for the ingestion ```yaml workflowConfig: openMetadataServerConfig: hostPort: 'http://localhost:8585/api' authProvider: custom-oidc securityConfig: clientId: '{your_client_id}' secretKey: '{your_client_secret}' domain: '{your_domain}' ``` ### 2. Run with the CLI First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run: ```bash metadata ingest -c ``` Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources. ## DBT Integration You can learn more about how to ingest DBT models' definitions and their lineage [here](https://docs.open-metadata.org/openmetadata/ingestion/workflows/metadata/dbt).