# Copyright 2021 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module to define helper methods for datalake and to fetch data and metadata from different auths and different file systems. """ from enum import Enum from typing import Any, Dict from metadata.ingestion.source.database.datalake.models import ( DatalakeTableSchemaWrapper, ) from metadata.utils.constants import CHUNKSIZE from metadata.utils.logger import utils_logger logger = utils_logger() COMPLEX_COLUMN_SEPARATOR = "_##" AZURE_PATH = "abfs://{bucket_name}@{account_name}.dfs.core.windows.net/{key}" logger = utils_logger() class DatalakeFileFormatException(Exception): def __init__(self, config_source: Any, file_name: str) -> None: message = f"Missing implementation for {config_source.__class__.__name__} for {file_name}" super().__init__(message) class FILE_FORMAT_DISPATCH_MAP: @classmethod def fetch_dispatch(cls): from metadata.utils.datalake.avro_dispatch import read_avro_dispatch from metadata.utils.datalake.csv_tsv_dispatch import ( read_csv_dispatch, read_tsv_dispatch, ) from metadata.utils.datalake.json_dispatch import read_json_dispatch from metadata.utils.datalake.parquet_dispatch import read_parquet_dispatch return { SUPPORTED_TYPES.CSV: read_csv_dispatch, SUPPORTED_TYPES.TSV: read_tsv_dispatch, SUPPORTED_TYPES.AVRO: read_avro_dispatch, SUPPORTED_TYPES.PARQUET: read_parquet_dispatch, SUPPORTED_TYPES.JSON: read_json_dispatch, SUPPORTED_TYPES.JSONGZ: read_json_dispatch, SUPPORTED_TYPES.JSONZIP: read_json_dispatch, } class SUPPORTED_TYPES(Enum): CSV = "csv" TSV = "tsv" AVRO = "avro" PARQUET = "parquet" JSON = "json" JSONGZ = "json.gz" JSONZIP = "json.zip" @property def return_dispatch(self): return FILE_FORMAT_DISPATCH_MAP.fetch_dispatch().get(self) def return_azure_storage_options(config_source: Any) -> Dict: connection_args = config_source.securityConfig return { "tenant_id": connection_args.tenantId, "client_id": connection_args.clientId, "account_name": connection_args.accountName, "client_secret": connection_args.clientSecret.get_secret_value(), } def dataframe_to_chunks(df): """ Reads the Dataframe and returns list of dataframes broken down in chunks """ return [ df[range_iter : range_iter + CHUNKSIZE] for range_iter in range(0, len(df), CHUNKSIZE) ] def fetch_dataframe( config_source, client, file_fqn: DatalakeTableSchemaWrapper, **kwargs ): """ Method to get dataframe for profiling """ # dispatch to handle fetching of data from multiple file formats (csv, tsv, json, avro and parquet) key: str = file_fqn.key bucket_name: str = file_fqn.bucket_name try: for supported_types_enum in SUPPORTED_TYPES: if key.endswith(supported_types_enum.value): return supported_types_enum.return_dispatch( config_source, key=key, bucket_name=bucket_name, client=client, **kwargs, ) except Exception as err: logger.error( f"Error fetching file {bucket_name}/{key} using {config_source.__class__.__name__} due to: {err}" ) return None