# Copyright 2021 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=arguments-differ """ Interfaces with database for all database engine supporting sqlalchemy abstraction layer """ import concurrent.futures import threading import traceback from collections import defaultdict from datetime import datetime, timezone from typing import Dict, List from sqlalchemy import Column, inspect from sqlalchemy.exc import ProgrammingError, ResourceClosedError from sqlalchemy.orm import scoped_session from metadata.generated.schema.entity.data.table import TableData from metadata.ingestion.connections.session import create_and_bind_thread_safe_session from metadata.mixins.sqalchemy.sqa_mixin import SQAInterfaceMixin from metadata.profiler.interface.profiler_interface import ProfilerInterface from metadata.profiler.metrics.core import MetricTypes from metadata.profiler.metrics.registry import Metrics from metadata.profiler.metrics.static.mean import Mean from metadata.profiler.metrics.static.stddev import StdDev from metadata.profiler.metrics.static.sum import Sum from metadata.profiler.orm.functions.table_metric_construct import ( table_metric_construct_factory, ) from metadata.profiler.orm.registry import Dialects from metadata.profiler.processor.runner import QueryRunner from metadata.utils.custom_thread_pool import CustomThreadPoolExecutor from metadata.utils.logger import profiler_interface_registry_logger logger = profiler_interface_registry_logger() thread_local = threading.local() OVERFLOW_ERROR_CODES = { "snowflake": {100046, 100058}, } def handle_query_exception(msg, exc, session): """Handle exception for query runs""" logger.debug(traceback.format_exc()) logger.warning(msg) session.rollback() raise RuntimeError(exc) class SQAProfilerInterface(ProfilerInterface, SQAInterfaceMixin): """ Interface to interact with registry supporting sqlalchemy. """ # pylint: disable=too-many-arguments def __init__( self, service_connection_config, ometa_client, entity, profile_sample_config, source_config, sample_query, table_partition_config, thread_count: int = 5, timeout_seconds: int = 43200, sqa_metadata=None, **kwargs, ): """Instantiate SQA Interface object""" super().__init__( service_connection_config, ometa_client, entity, profile_sample_config, source_config, sample_query, table_partition_config, thread_count, timeout_seconds, ) self._table = self._convert_table_to_orm_object(sqa_metadata) self.session_factory = self._session_factory() self.session = self.session_factory() self.set_session_tag(self.session) self.set_catalog(self.session) @property def table(self): return self._table def _get_sampler(self, **kwargs): """get sampler object""" from metadata.profiler.processor.sampler.sampler_factory import ( # pylint: disable=import-outside-toplevel sampler_factory_, ) session = kwargs.get("session") table = kwargs["table"] return sampler_factory_.create( self.service_connection_config.__class__.__name__, client=session or self.session, table=table, profile_sample_config=self.profile_sample_config, partition_details=self.partition_details, profile_sample_query=self.profile_query, ) def _session_factory(self) -> scoped_session: """Create thread safe session that will be automatically garbage collected once the application thread ends """ return create_and_bind_thread_safe_session(self.connection) @staticmethod def _compute_static_metrics_wo_sum( metrics: List[Metrics], runner: QueryRunner, session, column: Column, ): """If we catch an overflow error, we will try to compute the static metrics without the sum, mean and stddev Returns: _type_: _description_ """ try: row = runner.select_first_from_sample( *[ metric(column).fn() for metric in metrics if not metric.is_window_metric() and metric not in {Sum, StdDev, Mean} ] ) return dict(row) except Exception as exc: msg = f"Error trying to compute profile for {runner.table.__tablename__}.{column.name}: {exc}" handle_query_exception(msg, exc, session) return None def _compute_table_metrics( self, metrics: List[Metrics], runner: QueryRunner, session, *args, **kwargs, ): """Given a list of metrics, compute the given results and returns the values Args: metrics: list of metrics to compute Returns: dictionnary of results """ # pylint: disable=protected-access try: dialect = runner._session.get_bind().dialect.name row = table_metric_construct_factory.construct( dialect, runner=runner, metrics=metrics, conn_config=self.service_connection_config, ) if row: return dict(row) return None except Exception as exc: logger.debug(traceback.format_exc()) logger.warning( f"Error trying to compute profile for {runner.table.__tablename__}: {exc}" # type: ignore ) session.rollback() raise RuntimeError(exc) def _compute_static_metrics( self, metrics: List[Metrics], runner: QueryRunner, column, session, *args, **kwargs, ): """Given a list of metrics, compute the given results and returns the values Args: column: the column to compute the metrics against metrics: list of metrics to compute Returns: dictionnary of results """ try: row = runner.select_first_from_sample( *[ metric(column).fn() for metric in metrics if not metric.is_window_metric() ], ) return dict(row) except ProgrammingError as exc: return self._programming_error_static_metric( runner, column, exc, session, metrics ) except Exception as exc: msg = f"Error trying to compute profile for {runner.table.__tablename__}.{column.name}: {exc}" handle_query_exception(msg, exc, session) return None def _compute_query_metrics( self, metric: Metrics, runner: QueryRunner, column, session, sample, *args, **kwargs, ): """Given a list of metrics, compute the given results and returns the values Args: column: the column to compute the metrics against metrics: list of metrics to compute Returns: dictionnary of results """ try: col_metric = metric(column) metric_query = col_metric.query(sample=sample, session=session) if not metric_query: return None if col_metric.metric_type == dict: results = runner.select_all_from_query(metric_query) data = {k: [result[k] for result in results] for k in dict(results[0])} return {metric.name(): data} row = runner.select_first_from_query(metric_query) return dict(row) except ResourceClosedError as exc: # if the query returns no results, we will get a ResourceClosedError from Druid if ( # pylint: disable=protected-access runner._session.get_bind().dialect.name != Dialects.Druid ): msg = f"Error trying to compute profile for {runner.table.__tablename__}.{column.name}: {exc}" handle_query_exception(msg, exc, session) except Exception as exc: msg = f"Error trying to compute profile for {runner.table.__tablename__}.{column.name}: {exc}" handle_query_exception(msg, exc, session) return None def _compute_window_metrics( self, metrics: List[Metrics], runner: QueryRunner, column, session, *args, **kwargs, ): """Given a list of metrics, compute the given results and returns the values Args: column: the column to compute the metrics against metrics: list of metrics to compute Returns: dictionnary of results """ if not metrics: return None try: row = runner.select_first_from_sample( *[metric(column).fn() for metric in metrics], ) except ProgrammingError as exc: logger.info( f"Skipping metrics for {runner.table.__tablename__}.{column.name} due to {exc}" ) except Exception as exc: msg = f"Error trying to compute profile for {runner.table.__tablename__}.{column.name}: {exc}" handle_query_exception(msg, exc, session) if row: return dict(row) return None def _compute_system_metrics( self, metrics: Metrics, runner: QueryRunner, session, *args, **kwargs, ): """Get system metric for tables Args: metric_type: type of metric metrics: list of metrics to compute session: SQA session object Returns: dictionnary of results """ try: rows = metrics().sql(session, conn_config=self.service_connection_config) return rows except Exception as exc: msg = f"Error trying to compute profile for {runner.table.__tablename__}: {exc}" handle_query_exception(msg, exc, session) return None def _create_thread_safe_sampler( self, session, table, ): """Create thread safe runner""" if not hasattr(thread_local, "sampler"): thread_local.sampler = self._get_sampler( table=table, session=session, ) return thread_local.sampler def _create_thread_safe_runner( self, session, table, sample, ): """Create thread safe runner""" if not hasattr(thread_local, "runner"): thread_local.runner = QueryRunner( session=session, table=table, sample=sample, partition_details=self.partition_details, profile_sample_query=self.profile_query, ) return thread_local.runner def compute_metrics_in_thread( self, metrics, metric_type, column, table, ): """Run metrics in processor worker""" logger.debug( f"Running profiler for {table.__tablename__} on thread {threading.current_thread()}" ) Session = self.session_factory # pylint: disable=invalid-name with Session() as session: self.set_session_tag(session) self.set_catalog(session) sampler = self._create_thread_safe_sampler( session, table, ) sample = sampler.random_sample() runner = self._create_thread_safe_runner( session, table, sample, ) try: row = self._get_metric_fn[metric_type.value]( metrics, runner=runner, session=session, column=column, sample=sample, ) except Exception as exc: error = f"{column if column is not None else runner.table.__tablename__} metric_type.value: {exc}" logger.error(error) self.status.failed_profiler(error, traceback.format_exc()) row = None if column is not None: column = column.name self.status.scanned(f"{table.__tablename__}.{column}") else: self.status.scanned(table.__tablename__) return row, column, metric_type.value # pylint: disable=use-dict-literal def get_all_metrics( self, metric_funcs: list, ): """get all profiler metrics""" logger.debug(f"Computing metrics with {self._thread_count} threads.") profile_results = {"table": dict(), "columns": defaultdict(dict)} with CustomThreadPoolExecutor(max_workers=self._thread_count) as pool: futures = [ pool.submit( self.compute_metrics_in_thread, *metric_func, ) for metric_func in metric_funcs ] for future in futures: if future.cancelled(): continue try: profile, column, metric_type = future.result( timeout=self.timeout_seconds ) if metric_type != MetricTypes.System.value and not isinstance( profile, dict ): profile = dict() if metric_type == MetricTypes.Table.value: profile_results["table"].update(profile) elif metric_type == MetricTypes.System.value: profile_results["system"] = profile else: profile_results["columns"][column].update( { "name": column, "timestamp": int( datetime.now(tz=timezone.utc).timestamp() * 1000 ), **profile, } ) except concurrent.futures.TimeoutError as exc: pool.shutdown39(wait=True, cancel_futures=True) logger.debug(traceback.format_exc()) logger.error(f"Operation was cancelled due to TimeoutError - {exc}") raise concurrent.futures.TimeoutError return profile_results def fetch_sample_data(self, table, columns) -> TableData: """Fetch sample data from database Args: table: ORM declarative table Returns: TableData: sample table data """ sampler = self._get_sampler( table=table, ) return sampler.fetch_sample_data(columns) def get_composed_metrics( self, column: Column, metric: Metrics, column_results: Dict ): """Given a list of metrics, compute the given results and returns the values Args: column: the column to compute the metrics against metrics: list of metrics to compute Returns: dictionnary of results """ try: return metric(column).fn(column_results) except Exception as exc: logger.debug(traceback.format_exc()) logger.warning(f"Unexpected exception computing metrics: {exc}") self.session.rollback() return None def get_hybrid_metrics( self, column: Column, metric: Metrics, column_results: Dict, **kwargs ): """Given a list of metrics, compute the given results and returns the values Args: column: the column to compute the metrics against metrics: list of metrics to compute Returns: dictionnary of results """ sampler = self._get_sampler(table=kwargs.get("table")) sample = sampler.random_sample() try: return metric(column).fn(sample, column_results, self.session) except Exception as exc: logger.debug(traceback.format_exc()) logger.warning(f"Unexpected exception computing metrics: {exc}") self.session.rollback() return None def _programming_error_static_metric(self, runner, column, exc, _, __): """ Override Programming Error for Static Metrics """ logger.error( f"Skipping metrics due to {exc} for {runner.table.__tablename__}.{column.name}" ) def get_columns(self): """get columns from entity""" return list(inspect(self.table).c) def close(self): """Clean up session""" self.session.close() self.connection.pool.dispose()