--- title: Run Redpanda Connector using Airflow SDK slug: /connectors/messaging/redpanda/airflow --- # Run Redpanda using the Airflow SDK In this section, we provide guides and references to use the Redpanda connector. Configure and schedule Redpanda metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) ## Requirements {%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%} To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment. ### Python Requirements To run the Redpanda ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[redpanda]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/messaging/redpandaConnection.json) you can find the structure to create a connection to Redpanda. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config This is a sample config for Redpanda: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **bootstrapServers**: Redpanda bootstrap servers. Add them in comma separated values ex: host1:9092,host2:9092. {% /codeInfo %} {% codeInfo srNumber=2 %} **schemaRegistryURL**: Confluent Redpanda Schema Registry URL. URI format. {% /codeInfo %} {% codeInfo srNumber=3 %} **consumerConfig**: Confluent Redpanda Consumer Config. {% /codeInfo %} {% codeInfo srNumber=4 %} **schemaRegistryConfig**:Confluent Redpanda Schema Registry Config. **Note:** To ingest the topic schema `schemaRegistryURL` must be passed {% /codeInfo %} #### Source Configuration - Source Config {% codeInfo srNumber=5 %} The sourceConfig is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/messagingServiceMetadataPipeline.json): **generateSampleData:** Option to turn on/off generating sample data during metadata extraction. **topicFilterPattern:** Note that the `topicFilterPattern` supports regex as include or exclude. {% /codeInfo %} #### Sink Configuration {% codeInfo srNumber=6 %} To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`. {% /codeInfo %} #### Workflow Configuration {% codeInfo srNumber=7 %} The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation. For a simple, local installation using our docker containers, this looks like: {% /codeInfo %} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml source: type: redpanda serviceName: local_redpanda serviceConnection: config: type: Redpanda ``` ```yaml {% srNumber=1 %} bootstrapServers: localhost:9092 ``` ```yaml {% srNumber=2 %} schemaRegistryURL: http://localhost:8081 # Needs to be a URI ``` ```yaml {% srNumber=3 %} consumerConfig: {} ``` ```yaml {% srNumber=4 %} schemaRegistryConfig: {} ``` ```yaml {% srNumber=5 %} sourceConfig: config: type: MessagingMetadata topicFilterPattern: excludes: - _confluent.* # includes: # - topic1 # generateSampleData: true ``` ```yaml {% srNumber=6 %} sink: type: metadata-rest config: {} ``` ```yaml {% srNumber=7 %} workflowConfig: openMetadataServerConfig: hostPort: "http://localhost:8585/api" authProvider: openmetadata securityConfig: jwtToken: "{bot_jwt_token}" ``` {% /codeBlock %} {% /codePreview %} ### Workflow Configs for Security Provider We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client). ## Openmetadata JWT Auth - JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens). ```yaml workflowConfig: openMetadataServerConfig: hostPort: "http://localhost:8585/api" authProvider: openmetadata securityConfig: jwtToken: "{bot_jwt_token}" ``` - You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth). ### 2. Prepare the Ingestion DAG Create a Python file in your Airflow DAGs directory with the following contents: {% codePreview %} {% codeInfoContainer %} {% codeInfo srNumber=8 %} #### Import necessary modules The `Workflow` class that is being imported is a part of a metadata ingestion framework, which defines a process of getting data from different sources and ingesting it into a central metadata repository. Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG. {% /codeInfo %} {% codeInfo srNumber=9 %} **Default arguments for all tasks in the Airflow DAG.** - Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout. {% /codeInfo %} {% codeInfo srNumber=10 %} - **config**: Specifies config for the metadata ingestion as we prepare above. {% /codeInfo %} {% codeInfo srNumber=11 %} - **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `Workflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow. {% /codeInfo %} {% codeInfo srNumber=12 %} - **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements - For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag). {% /codeInfo %} Note that from connector to connector, this recipe will always be the same. By updating the `YAML configuration`, you will be able to extract metadata from different sources. {% /codeInfoContainer %} {% codeBlock fileName="filename.py" %} ```python {% srNumber=8 %} import pathlib import yaml from datetime import timedelta from airflow import DAG from metadata.config.common import load_config_file from metadata.ingestion.api.workflow import Workflow from airflow.utils.dates import days_ago try: from airflow.operators.python import PythonOperator except ModuleNotFoundError: from airflow.operators.python_operator import PythonOperator ``` ```python {% srNumber=9 %} default_args = { "owner": "user_name", "email": ["username@org.com"], "email_on_failure": False, "retries": 3, "retry_delay": timedelta(minutes=5), "execution_timeout": timedelta(minutes=60) } ``` ```python {% srNumber=10 %} config = """ """ ``` ```python {% srNumber=11 %} def metadata_ingestion_workflow(): workflow_config = yaml.safe_load(config) workflow = Workflow.create(workflow_config) workflow.execute() workflow.raise_from_status() workflow.print_status() workflow.stop() ``` ```python {% srNumber=12 %} with DAG( "sample_data", default_args=default_args, description="An example DAG which runs a OpenMetadata ingestion workflow", start_date=days_ago(1), is_paused_upon_creation=False, schedule_interval='*/5 * * * *', catchup=False, ) as dag: ingest_task = PythonOperator( task_id="ingest_using_recipe", python_callable=metadata_ingestion_workflow, ) ``` {% /codeBlock %} {% /codePreview %}